.. _mars-on-ray: Mars on Ray ============ .. _`issue on GitHub`: https://github.com/mars-project/mars/issues `Mars`_ is a tensor-based unified framework for large-scale data computation which scales Numpy, Pandas and Scikit-learn. Mars on Ray makes it easy to scale your programs with a Ray cluster. .. note:: This API is experimental in Mars. If you encounter any bugs, please file an `issue on GitHub`_. .. _`Mars`: https://docs.pymars.org Installation ------------- You can simply install Mars via pip: .. code-block:: bash pip install pymars>=0.6.0a1 Getting started ---------------- It's easy to run Mars jobs on a Ray cluster. Use ``from mars.session import new_session`` and run ``new_session(backend='ray').as_default()``; this will create a Mars session for Ray as the default session, and then all Mars tasks will be submitted to Ray. Arguments will be passed to ``ray.init()`` when creating a Mars session like this: ``new_session(backend='ray', address=
, num_cpus=)``. .. code-block:: python from mars.session import new_session ray_session = new_session(backend='ray').as_default() import mars.dataframe as md import mars.tensor as mt t = mt.random.rand(100, 4, chunk_size=30) df = md.DataFrame(t, columns=list('abcd')) print(df.describe().execute()) .. warning:: `Mars remote API`_ is not available for now. .. _`Mars remote API`: https://docs.pymars.org/en/latest/getting_started/remote.html