mirror of
https://github.com/vale981/ray
synced 2025-03-09 21:06:39 -04:00

* Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and Tune tests have been moved to python 3.7 * fix tune test_sampler::testSampleBoundsAx * fix re-install ray for py3.7 tests Co-authored-by: avnishn <avnishn@uw.edu>
104 lines
4.2 KiB
Python
104 lines
4.2 KiB
Python
import numpy as np
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.ddpg.td3 as td3
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
|
|
check_train_results, framework_iterator
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
class TestTD3(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def test_td3_compilation(self):
|
|
"""Test whether a TD3Trainer can be built with both frameworks."""
|
|
config = td3.TD3_DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
|
|
# Test against all frameworks.
|
|
for _ in framework_iterator(config, with_eager_tracing=True):
|
|
trainer = td3.TD3Trainer(config=config, env="Pendulum-v0")
|
|
num_iterations = 1
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
check_compute_single_action(trainer)
|
|
trainer.stop()
|
|
|
|
def test_td3_exploration_and_with_random_prerun(self):
|
|
"""Tests TD3's Exploration (w/ random actions for n timesteps)."""
|
|
config = td3.TD3_DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
obs = np.array([0.0, 0.1, -0.1])
|
|
|
|
# Test against all frameworks.
|
|
for _ in framework_iterator(config, with_eager_tracing=True):
|
|
lcl_config = config.copy()
|
|
# Default GaussianNoise setup.
|
|
trainer = td3.TD3Trainer(config=lcl_config, env="Pendulum-v0")
|
|
# Setting explore=False should always return the same action.
|
|
a_ = trainer.compute_single_action(obs, explore=False)
|
|
self.assertEqual(trainer.get_policy().global_timestep, 1)
|
|
for i in range(50):
|
|
a = trainer.compute_single_action(obs, explore=False)
|
|
self.assertEqual(trainer.get_policy().global_timestep, i + 2)
|
|
check(a, a_)
|
|
# explore=None (default: explore) should return different actions.
|
|
actions = []
|
|
for i in range(50):
|
|
actions.append(trainer.compute_single_action(obs))
|
|
self.assertEqual(trainer.get_policy().global_timestep, i + 52)
|
|
check(np.std(actions), 0.0, false=True)
|
|
trainer.stop()
|
|
|
|
# Check randomness at beginning.
|
|
lcl_config["exploration_config"] = {
|
|
# Act randomly at beginning ...
|
|
"random_timesteps": 30,
|
|
# Then act very closely to deterministic actions thereafter.
|
|
"stddev": 0.001,
|
|
"initial_scale": 0.001,
|
|
"final_scale": 0.001,
|
|
}
|
|
trainer = td3.TD3Trainer(config=lcl_config, env="Pendulum-v0")
|
|
# ts=0 (get a deterministic action as per explore=False).
|
|
deterministic_action = trainer.compute_single_action(
|
|
obs, explore=False)
|
|
self.assertEqual(trainer.get_policy().global_timestep, 1)
|
|
# ts=1-29 (in random window).
|
|
random_a = []
|
|
for i in range(1, 30):
|
|
random_a.append(
|
|
trainer.compute_single_action(obs, explore=True))
|
|
self.assertEqual(trainer.get_policy().global_timestep, i + 1)
|
|
check(random_a[-1], deterministic_action, false=True)
|
|
self.assertTrue(np.std(random_a) > 0.3)
|
|
|
|
# ts > 30 (a=deterministic_action + scale * N[0,1])
|
|
for i in range(50):
|
|
a = trainer.compute_single_action(obs, explore=True)
|
|
self.assertEqual(trainer.get_policy().global_timestep, i + 31)
|
|
check(a, deterministic_action, rtol=0.1)
|
|
|
|
# ts >> 30 (BUT: explore=False -> expect deterministic action).
|
|
for i in range(50):
|
|
a = trainer.compute_single_action(obs, explore=False)
|
|
self.assertEqual(trainer.get_policy().global_timestep, i + 81)
|
|
check(a, deterministic_action)
|
|
trainer.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|