mirror of
https://github.com/vale981/ray
synced 2025-03-05 18:11:42 -05:00
![]() * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and Tune tests have been moved to python 3.7 * fix tune test_sampler::testSampleBoundsAx * fix re-install ray for py3.7 tests Co-authored-by: avnishn <avnishn@uw.edu> |
||
---|---|---|
.. | ||
agents | ||
contrib | ||
env | ||
evaluation | ||
examples | ||
execution | ||
models | ||
offline | ||
policy | ||
tests | ||
tuned_examples | ||
utils | ||
__init__.py | ||
asv.conf.json | ||
BUILD | ||
evaluate.py | ||
README.md | ||
rollout.py | ||
scripts.py | ||
train.py |
RLlib: Scalable Reinforcement Learning
RLlib is an open-source library for reinforcement learning that offers both high scalability and a unified API for a variety of applications.
For an overview of RLlib, see the documentation.
If you've found RLlib useful for your research, you can cite the paper as follows:
@inproceedings{liang2018rllib,
Author = {Eric Liang and
Richard Liaw and
Robert Nishihara and
Philipp Moritz and
Roy Fox and
Ken Goldberg and
Joseph E. Gonzalez and
Michael I. Jordan and
Ion Stoica},
Title = {{RLlib}: Abstractions for Distributed Reinforcement Learning},
Booktitle = {International Conference on Machine Learning ({ICML})},
Year = {2018}
}
Development Install
You can develop RLlib locally without needing to compile Ray by using the setup-dev.py script. This sets up links between the rllib
dir in your git repo and the one bundled with the ray
package. When using this script, make sure that your git branch is in sync with the installed Ray binaries (i.e., you are up-to-date on master and have the latest wheel installed.)