mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
175 lines
5.5 KiB
Python
175 lines
5.5 KiB
Python
"""Note: Keep in sync with changes to VTraceTFPolicy."""
|
|
from typing import Optional, Dict
|
|
import gym
|
|
|
|
import ray
|
|
from ray.rllib.agents.ppo.ppo_tf_policy import ValueNetworkMixin
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.evaluation.episode import Episode
|
|
from ray.rllib.evaluation.postprocessing import (
|
|
compute_gae_for_sample_batch,
|
|
Postprocessing,
|
|
)
|
|
from ray.rllib.models.action_dist import ActionDistribution
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.tf_policy import LearningRateSchedule, EntropyCoeffSchedule
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
from ray.rllib.utils.deprecation import Deprecated
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.tf_utils import explained_variance
|
|
from ray.rllib.utils.typing import (
|
|
TrainerConfigDict,
|
|
TensorType,
|
|
PolicyID,
|
|
LocalOptimizer,
|
|
ModelGradients,
|
|
)
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
@Deprecated(
|
|
old="rllib.agents.a3c.a3c_tf_policy.postprocess_advantages",
|
|
new="rllib.evaluation.postprocessing.compute_gae_for_sample_batch",
|
|
error=False,
|
|
)
|
|
def postprocess_advantages(
|
|
policy: Policy,
|
|
sample_batch: SampleBatch,
|
|
other_agent_batches: Optional[Dict[PolicyID, SampleBatch]] = None,
|
|
episode: Optional[Episode] = None,
|
|
) -> SampleBatch:
|
|
|
|
return compute_gae_for_sample_batch(
|
|
policy, sample_batch, other_agent_batches, episode
|
|
)
|
|
|
|
|
|
class A3CLoss:
|
|
def __init__(
|
|
self,
|
|
action_dist: ActionDistribution,
|
|
actions: TensorType,
|
|
advantages: TensorType,
|
|
v_target: TensorType,
|
|
vf: TensorType,
|
|
valid_mask: TensorType,
|
|
vf_loss_coeff: float = 0.5,
|
|
entropy_coeff: float = 0.01,
|
|
use_critic: bool = True,
|
|
):
|
|
log_prob = action_dist.logp(actions)
|
|
|
|
# The "policy gradients" loss
|
|
self.pi_loss = -tf.reduce_sum(
|
|
tf.boolean_mask(log_prob * advantages, valid_mask)
|
|
)
|
|
|
|
delta = tf.boolean_mask(vf - v_target, valid_mask)
|
|
|
|
# Compute a value function loss.
|
|
if use_critic:
|
|
self.vf_loss = 0.5 * tf.reduce_sum(tf.math.square(delta))
|
|
# Ignore the value function.
|
|
else:
|
|
self.vf_loss = tf.constant(0.0)
|
|
|
|
self.entropy = tf.reduce_sum(tf.boolean_mask(action_dist.entropy(), valid_mask))
|
|
|
|
self.total_loss = (
|
|
self.pi_loss + self.vf_loss * vf_loss_coeff - self.entropy * entropy_coeff
|
|
)
|
|
|
|
|
|
def actor_critic_loss(
|
|
policy: Policy,
|
|
model: ModelV2,
|
|
dist_class: ActionDistribution,
|
|
train_batch: SampleBatch,
|
|
) -> TensorType:
|
|
model_out, _ = model(train_batch)
|
|
action_dist = dist_class(model_out, model)
|
|
if policy.is_recurrent():
|
|
max_seq_len = tf.reduce_max(train_batch[SampleBatch.SEQ_LENS])
|
|
mask = tf.sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len)
|
|
mask = tf.reshape(mask, [-1])
|
|
else:
|
|
mask = tf.ones_like(train_batch[SampleBatch.REWARDS])
|
|
policy.loss = A3CLoss(
|
|
action_dist,
|
|
train_batch[SampleBatch.ACTIONS],
|
|
train_batch[Postprocessing.ADVANTAGES],
|
|
train_batch[Postprocessing.VALUE_TARGETS],
|
|
model.value_function(),
|
|
mask,
|
|
policy.config["vf_loss_coeff"],
|
|
policy.entropy_coeff,
|
|
policy.config.get("use_critic", True),
|
|
)
|
|
return policy.loss.total_loss
|
|
|
|
|
|
def add_value_function_fetch(policy: Policy) -> Dict[str, TensorType]:
|
|
return {SampleBatch.VF_PREDS: policy.model.value_function()}
|
|
|
|
|
|
def stats(policy: Policy, train_batch: SampleBatch) -> Dict[str, TensorType]:
|
|
return {
|
|
"cur_lr": tf.cast(policy.cur_lr, tf.float64),
|
|
"entropy_coeff": tf.cast(policy.entropy_coeff, tf.float64),
|
|
"policy_loss": policy.loss.pi_loss,
|
|
"policy_entropy": policy.loss.entropy,
|
|
"var_gnorm": tf.linalg.global_norm(list(policy.model.trainable_variables())),
|
|
"vf_loss": policy.loss.vf_loss,
|
|
}
|
|
|
|
|
|
def grad_stats(
|
|
policy: Policy, train_batch: SampleBatch, grads: ModelGradients
|
|
) -> Dict[str, TensorType]:
|
|
return {
|
|
"grad_gnorm": tf.linalg.global_norm(grads),
|
|
"vf_explained_var": explained_variance(
|
|
train_batch[Postprocessing.VALUE_TARGETS], policy.model.value_function()
|
|
),
|
|
}
|
|
|
|
|
|
def clip_gradients(
|
|
policy: Policy, optimizer: LocalOptimizer, loss: TensorType
|
|
) -> ModelGradients:
|
|
grads_and_vars = optimizer.compute_gradients(
|
|
loss, policy.model.trainable_variables()
|
|
)
|
|
grads = [g for (g, v) in grads_and_vars]
|
|
grads, _ = tf.clip_by_global_norm(grads, policy.config["grad_clip"])
|
|
clipped_grads = list(zip(grads, policy.model.trainable_variables()))
|
|
return clipped_grads
|
|
|
|
|
|
def setup_mixins(
|
|
policy: Policy,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: TrainerConfigDict,
|
|
) -> None:
|
|
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
|
|
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
|
|
EntropyCoeffSchedule.__init__(
|
|
policy, config["entropy_coeff"], config["entropy_coeff_schedule"]
|
|
)
|
|
|
|
|
|
A3CTFPolicy = build_tf_policy(
|
|
name="A3CTFPolicy",
|
|
get_default_config=lambda: ray.rllib.agents.a3c.a3c.DEFAULT_CONFIG,
|
|
loss_fn=actor_critic_loss,
|
|
stats_fn=stats,
|
|
grad_stats_fn=grad_stats,
|
|
compute_gradients_fn=clip_gradients,
|
|
postprocess_fn=compute_gae_for_sample_batch,
|
|
extra_action_out_fn=add_value_function_fetch,
|
|
before_loss_init=setup_mixins,
|
|
mixins=[ValueNetworkMixin, LearningRateSchedule, EntropyCoeffSchedule],
|
|
)
|