mirror of
https://github.com/vale981/ray
synced 2025-03-07 02:51:39 -05:00
84 lines
2.7 KiB
Python
84 lines
2.7 KiB
Python
import os
|
|
from pathlib import Path
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.marwil as marwil
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import (
|
|
check_compute_single_action,
|
|
check_train_results,
|
|
framework_iterator,
|
|
)
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
class TestBC(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_bc_compilation_and_learning_from_offline_file(self):
|
|
"""Test whether a BCTrainer can be built with all frameworks.
|
|
|
|
And learns from a historic-data file (while being evaluated on an
|
|
actual env using evaluation_num_workers > 0).
|
|
"""
|
|
rllib_dir = Path(__file__).parent.parent.parent.parent
|
|
print("rllib dir={}".format(rllib_dir))
|
|
data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json")
|
|
print("data_file={} exists={}".format(data_file, os.path.isfile(data_file)))
|
|
|
|
config = marwil.BC_DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
|
|
config["evaluation_interval"] = 3
|
|
config["evaluation_num_workers"] = 1
|
|
config["evaluation_duration"] = 5
|
|
config["evaluation_parallel_to_training"] = True
|
|
# Evaluate on actual environment.
|
|
config["evaluation_config"] = {"input": "sampler"}
|
|
# Learn from offline data.
|
|
config["input"] = [data_file]
|
|
num_iterations = 350
|
|
min_reward = 70.0
|
|
|
|
# Test for all frameworks.
|
|
for _ in framework_iterator(config, frameworks=("tf", "torch")):
|
|
trainer = marwil.BCTrainer(config=config, env="CartPole-v0")
|
|
learnt = False
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
|
|
eval_results = results.get("evaluation")
|
|
if eval_results:
|
|
print("iter={} R={}".format(i, eval_results["episode_reward_mean"]))
|
|
# Learn until good reward is reached in the actual env.
|
|
if eval_results["episode_reward_mean"] > min_reward:
|
|
print("learnt!")
|
|
learnt = True
|
|
break
|
|
|
|
if not learnt:
|
|
raise ValueError(
|
|
"BCTrainer did not reach {} reward from expert offline "
|
|
"data!".format(min_reward)
|
|
)
|
|
|
|
check_compute_single_action(trainer, include_prev_action_reward=True)
|
|
|
|
trainer.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|