ray/rllib/agents/cql
2022-03-24 12:32:29 +01:00
..
tests [CI] Format Python code with Black (#21975) 2022-01-29 18:41:57 -08:00
__init__.py [RLlib] New Offline RL Algorithm: CQL (based on SAC) (#13118) 2020-12-30 10:11:57 -05:00
cql.py [CI] Replace YAPF disables with Black disables (#21982) 2022-02-08 16:29:25 -08:00
cql_tf_policy.py [RLlib] Change type to tensortype for cql policies. (#23438) 2022-03-24 12:32:29 +01:00
cql_torch_policy.py [RLlib] Change type to tensortype for cql policies. (#23438) 2022-03-24 12:32:29 +01:00
README.md [RLlib] CQL Documentation + Tests (#14531) 2021-03-11 18:51:39 +01:00

Conservative Q-Learning (CQL)

Overview

CQL is an offline RL algorithm that mitigates the overestimation of Q-values outside the dataset distribution via convservative critic estimates. CQL does this by adding a simple Q regularizer loss to the standard Belman update loss. This ensures that the critic does not output overly-optimistic Q-values and can be added on top of any off-policy Q-learning algorithm (in this case, we use SAC).

Documentation & Implementation:

Conservative Q-Learning (CQL).

Detailed Documentation

Implementation