ray/test/tensorflow_test.py
Wapaul1 1a7e1c47cb Added example for compute grads in ray tutorial (#238)
* Added example for compute grads in ray

* Added formatting

* Removed need for placeholders in apply gradient

* Streamlined examples

* Fixed docs

* Added formatting

* Removed old references

* Simplified code some

* Addressed comments

* Changes to first code block

* Added test for training and updated code snippets

* Formatting

* Removed mean

* Removed all mention of mean

* Added comments

* Added comments
2017-02-07 18:07:21 -08:00

243 lines
8.4 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import uuid
import tensorflow as tf
import ray
from numpy.testing import assert_almost_equal
def make_linear_network(w_name=None, b_name=None):
# Define the inputs.
x_data = tf.placeholder(tf.float32, shape=[100])
y_data = tf.placeholder(tf.float32, shape=[100])
# Define the weights and computation.
w = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name=w_name)
b = tf.Variable(tf.zeros([1]), name=b_name)
y = w * x_data + b
# Return the loss and weight initializer.
return tf.reduce_mean(tf.square(y - y_data)), tf.global_variables_initializer(), x_data, y_data
def net_vars_initializer():
# Uses a separate graph for each network.
with tf.Graph().as_default():
# Create the network.
loss, init, _, _ = make_linear_network()
sess = tf.Session()
# Additional code for setting and getting the weights.
variables = ray.experimental.TensorFlowVariables(loss, sess)
# Return all of the data needed to use the network.
return variables, init, sess
def net_vars_reinitializer(net_vars):
return net_vars
def train_vars_initializer():
# Almost the same as above, but now returns the placeholders and gradient.
with tf.Graph().as_default():
loss, init, x_data, y_data = make_linear_network()
sess = tf.Session()
variables = ray.experimental.TensorFlowVariables(loss, sess)
optimizer = tf.train.GradientDescentOptimizer(0.9)
grads = optimizer.compute_gradients(loss)
train = optimizer.apply_gradients(grads)
return loss, variables, init, sess, grads, train, [x_data, y_data]
class TensorFlowTest(unittest.TestCase):
def testTensorFlowVariables(self):
ray.init(num_workers=2)
sess = tf.Session()
loss, init, _, _ = make_linear_network()
sess.run(init)
variables = ray.experimental.TensorFlowVariables(loss, sess)
weights = variables.get_weights()
for (name, val) in weights.items():
weights[name] += 1.0
variables.set_weights(weights)
self.assertEqual(weights, variables.get_weights())
loss2, init2, _, _ = make_linear_network("w", "b")
sess.run(init2)
variables2 = ray.experimental.TensorFlowVariables(loss2, sess)
weights2 = variables2.get_weights()
for (name, val) in weights2.items():
weights2[name] += 2.0
variables2.set_weights(weights2)
self.assertEqual(weights2, variables2.get_weights())
flat_weights = variables2.get_flat() + 2.0
variables2.set_flat(flat_weights)
assert_almost_equal(flat_weights, variables2.get_flat())
variables3 = ray.experimental.TensorFlowVariables(loss2)
self.assertEqual(variables3.sess, None)
sess = tf.Session()
variables3.set_session(sess)
self.assertEqual(variables3.sess, sess)
ray.worker.cleanup()
# Test that the variable names for the two different nets are not
# modified by TensorFlow to be unique (i.e. they should already
# be unique because of the variable prefix).
def testVariableNameCollision(self):
ray.init(num_workers=2)
ray.env.net1 = ray.EnvironmentVariable(net_vars_initializer, net_vars_reinitializer)
ray.env.net2 = ray.EnvironmentVariable(net_vars_initializer, net_vars_reinitializer)
net_vars1, init1, sess1 = ray.env.net1
net_vars2, init2, sess2 = ray.env.net2
# Initialize the networks
sess1.run(init1)
sess2.run(init2)
# This is checking that the variable names of the two nets are the same,
# i.e. that the names in the weight dictionaries are the same
ray.env.net1[0].set_weights(ray.env.net2[0].get_weights())
ray.worker.cleanup()
# Test that different networks on the same worker are independent and
# we can get/set their weights without any interaction.
def testNetworksIndependent(self):
# Note we use only one worker to ensure that all of the remote functions run on the same worker.
ray.init(num_workers=1)
ray.env.net1 = ray.EnvironmentVariable(net_vars_initializer, net_vars_reinitializer)
ray.env.net2 = ray.EnvironmentVariable(net_vars_initializer, net_vars_reinitializer)
net_vars1, init1, sess1 = ray.env.net1
net_vars2, init2, sess2 = ray.env.net2
# Initialize the networks
sess1.run(init1)
sess2.run(init2)
@ray.remote
def set_and_get_weights(weights1, weights2):
ray.env.net1[0].set_weights(weights1)
ray.env.net2[0].set_weights(weights2)
return ray.env.net1[0].get_weights(), ray.env.net2[0].get_weights()
# Make sure the two networks have different weights. TODO(rkn): Note that
# equality comparisons of numpy arrays normally does not work. This only
# works because at the moment they have size 1.
weights1 = net_vars1.get_weights()
weights2 = net_vars2.get_weights()
self.assertNotEqual(weights1, weights2)
# Set the weights and get the weights, and make sure they are unchanged.
new_weights1, new_weights2 = ray.get(set_and_get_weights.remote(weights1, weights2))
self.assertEqual(weights1, new_weights1)
self.assertEqual(weights2, new_weights2)
# Swap the weights.
new_weights2, new_weights1 = ray.get(set_and_get_weights.remote(weights2, weights1))
self.assertEqual(weights1, new_weights1)
self.assertEqual(weights2, new_weights2)
ray.worker.cleanup()
# This test creates an additional network on the driver so that the tensorflow
# variables on the driver and the worker differ.
def testNetworkDriverWorkerIndependent(self):
ray.init(num_workers=1)
# Create a network on the driver locally.
sess1 = tf.Session()
loss1, init1, _, _ = make_linear_network()
net_vars1 = ray.experimental.TensorFlowVariables(loss1, sess1)
sess1.run(init1)
# Create a network on the driver via an environment variable.
ray.env.net = ray.EnvironmentVariable(net_vars_initializer, net_vars_reinitializer)
net_vars2, init2, sess2 = ray.env.net
sess2.run(init2)
weights2 = net_vars2.get_weights()
@ray.remote
def set_and_get_weights(weights):
ray.env.net[0].set_weights(weights)
return ray.env.net[0].get_weights()
new_weights2 = ray.get(set_and_get_weights.remote(net_vars2.get_weights()))
self.assertEqual(weights2, new_weights2)
ray.worker.cleanup()
def testVariablesControlDependencies(self):
ray.init(num_workers=1)
# Creates a network and appends a momentum optimizer.
sess = tf.Session()
loss, init, _, _ = make_linear_network()
minimizer = tf.train.MomentumOptimizer(0.9, 0.9).minimize(loss)
net_vars = ray.experimental.TensorFlowVariables(minimizer, sess)
sess.run(init)
# Tests if all variables are properly retrieved, 2 variables and 2 momentum
# variables.
self.assertEqual(len(net_vars.variables.items()), 4)
ray.worker.cleanup()
def testRemoteTrainingStep(self):
ray.init(num_workers=1)
ray.env.net = ray.EnvironmentVariable(train_vars_initializer, net_vars_reinitializer)
@ray.remote
def training_step(weights):
_, variables, _, sess, grads, _, placeholders = ray.env.net
variables.set_weights(weights)
return sess.run([grad[0] for grad in grads], feed_dict=dict(zip(placeholders, [[1]*100]*2)))
_, variables, init, sess, _, _, _ = ray.env.net
sess.run(init)
ray.get(training_step.remote(variables.get_weights()))
ray.worker.cleanup()
def testRemoteTrainingLoss(self):
ray.init(num_workers=2)
ray.env.net = ray.EnvironmentVariable(train_vars_initializer, net_vars_reinitializer)
@ray.remote
def training_step(weights):
_, variables, _, sess, grads, _, placeholders = ray.env.net
variables.set_weights(weights)
return sess.run([grad[0] for grad in grads], feed_dict=dict(zip(placeholders, [[1]*100, [2]*100])))
loss, variables, init, sess, grads, train, placeholders = ray.env.net
sess.run(init)
before_acc = sess.run(loss, feed_dict=dict(zip(placeholders, [[2]*100, [4]*100])))
for _ in range(3):
gradients_list = ray.get([training_step.remote(variables.get_weights()) for _ in range(2)])
mean_grads = [sum([gradients[i] for gradients in gradients_list]) / len(gradients_list) for i in range(len(gradients_list[0]))]
feed_dict = {grad[0]: mean_grad for (grad, mean_grad) in zip(grads, mean_grads)}
sess.run(train, feed_dict=feed_dict)
after_acc = sess.run(loss, feed_dict=dict(zip(placeholders, [[2]*100, [4]*100])))
self.assertTrue(before_acc < after_acc)
ray.worker.cleanup()
if __name__ == "__main__":
unittest.main(verbosity=2)