No description
Find a file
Wapaul1 1a7e1c47cb Added example for compute grads in ray tutorial (#238)
* Added example for compute grads in ray

* Added formatting

* Removed need for placeholders in apply gradient

* Streamlined examples

* Fixed docs

* Added formatting

* Removed old references

* Simplified code some

* Addressed comments

* Changes to first code block

* Added test for training and updated code snippets

* Formatting

* Removed mean

* Removed all mention of mean

* Added comments

* Added comments
2017-02-07 18:07:21 -08:00
.travis Switch build system to use CMake completely. (#200) 2017-01-17 16:56:40 -08:00
cmake/Modules help cmake find right python interpreter on mac (#251) 2016-07-11 12:16:10 -07:00
doc Added example for compute grads in ray tutorial (#238) 2017-02-07 18:07:21 -08:00
docker fix docker build bug (#207) 2017-01-18 23:23:34 -08:00
examples Added functionality for retrieving variables from control dependencies (#220) 2017-01-30 19:17:42 -08:00
python Added example for compute grads in ray tutorial (#238) 2017-02-07 18:07:21 -08:00
scripts Add Redis port option to startup script (#232) 2017-01-31 00:28:00 -08:00
src fix segfault in photon.Task (#253) 2017-02-07 11:17:11 -08:00
test Added example for compute grads in ray tutorial (#238) 2017-02-07 18:07:21 -08:00
vsprojects Windows compatibility (#57) 2016-11-22 17:04:24 -08:00
webui Display drivers in web UI. (#252) 2017-02-07 14:21:25 -08:00
.clang-format Implement object table notification subscriptions and switch to using Redis modules for object table. (#134) 2016-12-18 18:19:02 -08:00
.editorconfig Update Windows support (#317) 2016-07-28 13:11:13 -07:00
.gitignore Switch build system to use CMake completely. (#200) 2017-01-17 16:56:40 -08:00
.travis.yml Add driver ID to task spec and add driver ID to Python error handling. (#225) 2017-01-25 22:53:48 -08:00
build-docker.sh updated Docker files (#171) 2016-12-31 17:21:33 -08:00
build.sh Switch build system to use CMake completely. (#200) 2017-01-17 16:56:40 -08:00
CMakeLists.txt Switch build system to use CMake completely. (#200) 2017-01-17 16:56:40 -08:00
LICENSE Change license to Apache 2 (#20) 2016-11-01 23:19:06 -07:00
pylintrc adding pylint (#233) 2016-07-08 12:39:11 -07:00
Ray.sln Windows compatibility (#57) 2016-11-22 17:04:24 -08:00
README.md Update tutorial. (#196) 2017-01-10 23:52:38 -08:00

Ray

Build Status

Ray is an experimental distributed execution engine. It is under development and not ready to be used.

The goal of Ray is to make it easy to write machine learning applications that run on a cluster while providing the development and debugging experience of working on a single machine.

Before jumping into the details, here's a simple Python example for doing a Monte Carlo estimation of pi (using multiple cores or potentially multiple machines).

import ray
import numpy as np

# Start Ray with some workers.
ray.init(num_workers=10)

# Define a remote function for estimating pi.
@ray.remote
def estimate_pi(n):
  x = np.random.uniform(size=n)
  y = np.random.uniform(size=n)
  return 4 * np.mean(x ** 2 + y ** 2 < 1)

# Launch 10 tasks, each of which estimates pi.
result_ids = []
for _ in range(10):
  result_ids.append(estimate_pi.remote(100))

# Fetch the results of the tasks and print their average.
estimate = np.mean(ray.get(result_ids))
print("Pi is approximately {}.".format(estimate))

Within the for loop, each call to estimate_pi.remote(100) sends a message to the scheduler asking it to schedule the task of running estimate_pi with the argument 100. This call returns right away without waiting for the actual estimation of pi to take place. Instead of returning a float, it returns an object ID, which represents the eventual output of the computation (this is a similar to a Future).

The call to ray.get(result_id) takes an object ID and returns the actual estimate of pi (waiting until the computation has finished if necessary).

Next Steps

Example Applications