mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
66 lines
1.8 KiB
Python
66 lines
1.8 KiB
Python
# This workload tests submitting and getting many tasks over and over.
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
import ray
|
|
from ray.cluster_utils import Cluster
|
|
|
|
num_redis_shards = 5
|
|
redis_max_memory = 10**8
|
|
object_store_memory = 10**8
|
|
num_nodes = 10
|
|
|
|
message = ("Make sure there is enough memory on this machine to run this "
|
|
"workload. We divide the system memory by 2 to provide a buffer.")
|
|
assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory <
|
|
ray.utils.get_system_memory() / 2), message
|
|
|
|
# Simulate a cluster on one machine.
|
|
|
|
cluster = Cluster()
|
|
for i in range(num_nodes):
|
|
cluster.add_node(
|
|
redis_port=6379 if i == 0 else None,
|
|
num_redis_shards=num_redis_shards if i == 0 else None,
|
|
num_cpus=2,
|
|
num_gpus=0,
|
|
resources={str(i): 2},
|
|
object_store_memory=object_store_memory,
|
|
redis_max_memory=redis_max_memory,
|
|
dashboard_host="0.0.0.0")
|
|
ray.init(address=cluster.address)
|
|
|
|
# Run the workload.
|
|
|
|
|
|
@ray.remote
|
|
def f(*xs):
|
|
return np.zeros(1024, dtype=np.uint8)
|
|
|
|
|
|
iteration = 0
|
|
ids = []
|
|
start_time = time.time()
|
|
previous_time = start_time
|
|
while True:
|
|
for _ in range(50):
|
|
new_constrained_ids = [
|
|
f._remote(args=[*ids], resources={str(i % num_nodes): 1})
|
|
for i in range(25)
|
|
]
|
|
new_unconstrained_ids = [f.remote(*ids) for _ in range(25)]
|
|
ids = new_constrained_ids + new_unconstrained_ids
|
|
|
|
ray.get(ids)
|
|
|
|
new_time = time.time()
|
|
print("Iteration {}:\n"
|
|
" - Iteration time: {}.\n"
|
|
" - Absolute time: {}.\n"
|
|
" - Total elapsed time: {}.".format(
|
|
iteration, new_time - previous_time, new_time,
|
|
new_time - start_time))
|
|
previous_time = new_time
|
|
iteration += 1
|