# This workload tests submitting and getting many tasks over and over. import time import numpy as np import ray from ray.cluster_utils import Cluster num_redis_shards = 5 redis_max_memory = 10**8 object_store_memory = 10**8 num_nodes = 10 message = ("Make sure there is enough memory on this machine to run this " "workload. We divide the system memory by 2 to provide a buffer.") assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory < ray.utils.get_system_memory() / 2), message # Simulate a cluster on one machine. cluster = Cluster() for i in range(num_nodes): cluster.add_node( redis_port=6379 if i == 0 else None, num_redis_shards=num_redis_shards if i == 0 else None, num_cpus=2, num_gpus=0, resources={str(i): 2}, object_store_memory=object_store_memory, redis_max_memory=redis_max_memory, dashboard_host="0.0.0.0") ray.init(address=cluster.address) # Run the workload. @ray.remote def f(*xs): return np.zeros(1024, dtype=np.uint8) iteration = 0 ids = [] start_time = time.time() previous_time = start_time while True: for _ in range(50): new_constrained_ids = [ f._remote(args=[*ids], resources={str(i % num_nodes): 1}) for i in range(25) ] new_unconstrained_ids = [f.remote(*ids) for _ in range(25)] ids = new_constrained_ids + new_unconstrained_ids ray.get(ids) new_time = time.time() print("Iteration {}:\n" " - Iteration time: {}.\n" " - Absolute time: {}.\n" " - Total elapsed time: {}.".format( iteration, new_time - previous_time, new_time, new_time - start_time)) previous_time = new_time iteration += 1