ray/release/long_running_tests/workloads/many_ppo.py
Eric Liang 9f322db71d
Add many_ppo long running test (#12364)
* add new tes

* update

* update
2020-11-24 16:00:33 -08:00

49 lines
1.3 KiB
Python

# This workload tests running many instances of PPO (many actors)
# This covers https://github.com/ray-project/ray/pull/12148
import ray
from ray.cluster_utils import Cluster
from ray.tune import run_experiments
num_redis_shards = 5
redis_max_memory = 10**8
object_store_memory = 10**9
num_nodes = 3
message = ("Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer.")
assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory <
ray.utils.get_system_memory() / 2), message
# Simulate a cluster on one machine.
cluster = Cluster()
for i in range(num_nodes):
cluster.add_node(
redis_port=6379 if i == 0 else None,
num_redis_shards=num_redis_shards if i == 0 else None,
num_cpus=20,
num_gpus=0,
resources={str(i): 2},
object_store_memory=object_store_memory,
redis_max_memory=redis_max_memory,
dashboard_host="0.0.0.0")
ray.init(address=cluster.address)
# Run the workload.
run_experiments({
"ppo": {
"run": "PPO",
"env": "CartPole-v0",
"num_samples": 10000,
"config": {
"num_workers": 8,
"num_gpus": 0,
"num_sgd_iter": 1,
},
"stop": {
"timesteps_total": 1,
},
}
})