# This workload tests running many instances of PPO (many actors) # This covers https://github.com/ray-project/ray/pull/12148 import ray from ray.cluster_utils import Cluster from ray.tune import run_experiments num_redis_shards = 5 redis_max_memory = 10**8 object_store_memory = 10**9 num_nodes = 3 message = ("Make sure there is enough memory on this machine to run this " "workload. We divide the system memory by 2 to provide a buffer.") assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory < ray.utils.get_system_memory() / 2), message # Simulate a cluster on one machine. cluster = Cluster() for i in range(num_nodes): cluster.add_node( redis_port=6379 if i == 0 else None, num_redis_shards=num_redis_shards if i == 0 else None, num_cpus=20, num_gpus=0, resources={str(i): 2}, object_store_memory=object_store_memory, redis_max_memory=redis_max_memory, dashboard_host="0.0.0.0") ray.init(address=cluster.address) # Run the workload. run_experiments({ "ppo": { "run": "PPO", "env": "CartPole-v0", "num_samples": 10000, "config": { "num_workers": 8, "num_gpus": 0, "num_sgd_iter": 1, }, "stop": { "timesteps_total": 1, }, } })