mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
650 lines
23 KiB
Python
650 lines
23 KiB
Python
from collections import Counter
|
|
import gym
|
|
import numpy as np
|
|
import os
|
|
import random
|
|
import time
|
|
import unittest
|
|
|
|
import ray
|
|
from ray.rllib.agents.pg import PGTrainer
|
|
from ray.rllib.agents.a3c import A2CTrainer
|
|
from ray.rllib.env.vector_env import VectorEnv
|
|
from ray.rllib.evaluation.rollout_worker import RolloutWorker
|
|
from ray.rllib.evaluation.metrics import collect_metrics
|
|
from ray.rllib.evaluation.postprocessing import compute_advantages
|
|
from ray.rllib.examples.policy.random_policy import RandomPolicy
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID, SampleBatch
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.test_utils import check, framework_iterator
|
|
from ray.tune.registry import register_env
|
|
|
|
|
|
class MockPolicy(RandomPolicy):
|
|
@override(RandomPolicy)
|
|
def compute_actions(self,
|
|
obs_batch,
|
|
state_batches=None,
|
|
prev_action_batch=None,
|
|
prev_reward_batch=None,
|
|
episodes=None,
|
|
explore=None,
|
|
timestep=None,
|
|
**kwargs):
|
|
return np.array([random.choice([0, 1])] * len(obs_batch)), [], {}
|
|
|
|
@override(Policy)
|
|
def postprocess_trajectory(self,
|
|
batch,
|
|
other_agent_batches=None,
|
|
episode=None):
|
|
assert episode is not None
|
|
super().postprocess_trajectory(batch, other_agent_batches, episode)
|
|
return compute_advantages(
|
|
batch, 100.0, 0.9, use_gae=False, use_critic=False)
|
|
|
|
|
|
class BadPolicy(RandomPolicy):
|
|
@override(RandomPolicy)
|
|
def compute_actions(self,
|
|
obs_batch,
|
|
state_batches=None,
|
|
prev_action_batch=None,
|
|
prev_reward_batch=None,
|
|
episodes=None,
|
|
explore=None,
|
|
timestep=None,
|
|
**kwargs):
|
|
raise Exception("intentional error")
|
|
|
|
|
|
class FailOnStepEnv(gym.Env):
|
|
def __init__(self):
|
|
self.observation_space = gym.spaces.Discrete(1)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
raise ValueError("kaboom")
|
|
|
|
def step(self, action):
|
|
raise ValueError("kaboom")
|
|
|
|
|
|
class MockEnv(gym.Env):
|
|
def __init__(self, episode_length, config=None):
|
|
self.episode_length = episode_length
|
|
self.config = config
|
|
self.i = 0
|
|
self.observation_space = gym.spaces.Discrete(1)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
self.i = 0
|
|
return self.i
|
|
|
|
def step(self, action):
|
|
self.i += 1
|
|
return 0, 1, self.i >= self.episode_length, {}
|
|
|
|
|
|
class MockEnv2(gym.Env):
|
|
def __init__(self, episode_length):
|
|
self.episode_length = episode_length
|
|
self.i = 0
|
|
self.observation_space = gym.spaces.Discrete(100)
|
|
self.action_space = gym.spaces.Discrete(2)
|
|
|
|
def reset(self):
|
|
self.i = 0
|
|
return self.i
|
|
|
|
def step(self, action):
|
|
self.i += 1
|
|
return self.i, 100, self.i >= self.episode_length, {}
|
|
|
|
|
|
class MockVectorEnv(VectorEnv):
|
|
def __init__(self, episode_length, num_envs):
|
|
super().__init__(
|
|
observation_space=gym.spaces.Discrete(1),
|
|
action_space=gym.spaces.Discrete(2),
|
|
num_envs=num_envs)
|
|
self.envs = [MockEnv(episode_length) for _ in range(num_envs)]
|
|
|
|
@override(VectorEnv)
|
|
def vector_reset(self):
|
|
return [e.reset() for e in self.envs]
|
|
|
|
@override(VectorEnv)
|
|
def reset_at(self, index):
|
|
return self.envs[index].reset()
|
|
|
|
@override(VectorEnv)
|
|
def vector_step(self, actions):
|
|
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
|
|
for i in range(len(self.envs)):
|
|
obs, rew, done, info = self.envs[i].step(actions[i])
|
|
obs_batch.append(obs)
|
|
rew_batch.append(rew)
|
|
done_batch.append(done)
|
|
info_batch.append(info)
|
|
return obs_batch, rew_batch, done_batch, info_batch
|
|
|
|
@override(VectorEnv)
|
|
def get_unwrapped(self):
|
|
return self.envs
|
|
|
|
|
|
class TestRolloutWorker(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init(num_cpus=5)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_basic(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"), policy=MockPolicy)
|
|
batch = ev.sample()
|
|
for key in [
|
|
"obs", "actions", "rewards", "dones", "advantages",
|
|
"prev_rewards", "prev_actions"
|
|
]:
|
|
self.assertIn(key, batch)
|
|
self.assertGreater(np.abs(np.mean(batch[key])), 0)
|
|
|
|
def to_prev(vec):
|
|
out = np.zeros_like(vec)
|
|
for i, v in enumerate(vec):
|
|
if i + 1 < len(out) and not batch["dones"][i]:
|
|
out[i + 1] = v
|
|
return out.tolist()
|
|
|
|
self.assertEqual(batch["prev_rewards"].tolist(),
|
|
to_prev(batch["rewards"]))
|
|
self.assertEqual(batch["prev_actions"].tolist(),
|
|
to_prev(batch["actions"]))
|
|
self.assertGreater(batch["advantages"][0], 1)
|
|
ev.stop()
|
|
|
|
def test_batch_ids(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
rollout_fragment_length=1)
|
|
batch1 = ev.sample()
|
|
batch2 = ev.sample()
|
|
self.assertEqual(len(set(batch1["unroll_id"])), 1)
|
|
self.assertEqual(len(set(batch2["unroll_id"])), 1)
|
|
self.assertEqual(
|
|
len(set(SampleBatch.concat(batch1, batch2)["unroll_id"])), 2)
|
|
ev.stop()
|
|
|
|
def test_global_vars_update(self):
|
|
# Allow for Unittest run.
|
|
ray.init(num_cpus=5, ignore_reinit_error=True)
|
|
for fw in framework_iterator(frameworks=()):
|
|
agent = A2CTrainer(
|
|
env="CartPole-v0",
|
|
config={
|
|
"num_workers": 1,
|
|
"lr_schedule": [[0, 0.1], [100000, 0.000001]],
|
|
"framework": fw,
|
|
})
|
|
result = agent.train()
|
|
for i in range(10):
|
|
result = agent.train()
|
|
print("num_steps_sampled={}".format(
|
|
result["info"]["num_steps_sampled"]))
|
|
print("num_steps_trained={}".format(
|
|
result["info"]["num_steps_trained"]))
|
|
print("num_steps_sampled={}".format(
|
|
result["info"]["num_steps_sampled"]))
|
|
print("num_steps_trained={}".format(
|
|
result["info"]["num_steps_trained"]))
|
|
if i == 0:
|
|
self.assertGreater(
|
|
result["info"]["learner"]["default_policy"]["cur_lr"],
|
|
0.01)
|
|
if result["info"]["learner"]["default_policy"]["cur_lr"] < \
|
|
0.07:
|
|
break
|
|
self.assertLess(
|
|
result["info"]["learner"]["default_policy"]["cur_lr"], 0.07)
|
|
agent.stop()
|
|
|
|
def test_no_step_on_init(self):
|
|
register_env("fail", lambda _: FailOnStepEnv())
|
|
for fw in framework_iterator(frameworks=()):
|
|
pg = PGTrainer(
|
|
env="fail", config={
|
|
"num_workers": 1,
|
|
"framework": fw,
|
|
})
|
|
self.assertRaises(Exception, lambda: pg.train())
|
|
pg.stop()
|
|
|
|
def test_callbacks(self):
|
|
for fw in framework_iterator(frameworks=("torch", "tf")):
|
|
counts = Counter()
|
|
pg = PGTrainer(
|
|
env="CartPole-v0", config={
|
|
"num_workers": 0,
|
|
"rollout_fragment_length": 50,
|
|
"train_batch_size": 50,
|
|
"callbacks": {
|
|
"on_episode_start":
|
|
lambda x: counts.update({"start": 1}),
|
|
"on_episode_step":
|
|
lambda x: counts.update({"step": 1}),
|
|
"on_episode_end": lambda x: counts.update({"end": 1}),
|
|
"on_sample_end":
|
|
lambda x: counts.update({"sample": 1}),
|
|
},
|
|
"framework": fw,
|
|
})
|
|
pg.train()
|
|
pg.train()
|
|
self.assertGreater(counts["sample"], 0)
|
|
self.assertGreater(counts["start"], 0)
|
|
self.assertGreater(counts["end"], 0)
|
|
self.assertGreater(counts["step"], 0)
|
|
pg.stop()
|
|
|
|
def test_query_evaluators(self):
|
|
register_env("test", lambda _: gym.make("CartPole-v0"))
|
|
for fw in framework_iterator(frameworks=("torch", "tf")):
|
|
pg = PGTrainer(
|
|
env="test",
|
|
config={
|
|
"num_workers": 2,
|
|
"rollout_fragment_length": 5,
|
|
"num_envs_per_worker": 2,
|
|
"framework": fw,
|
|
})
|
|
results = pg.workers.foreach_worker(
|
|
lambda ev: ev.rollout_fragment_length)
|
|
results2 = pg.workers.foreach_worker_with_index(
|
|
lambda ev, i: (i, ev.rollout_fragment_length))
|
|
results3 = pg.workers.foreach_worker(
|
|
lambda ev: ev.foreach_env(lambda env: 1))
|
|
self.assertEqual(results, [10, 10, 10])
|
|
self.assertEqual(results2, [(0, 10), (1, 10), (2, 10)])
|
|
self.assertEqual(results3, [[1, 1], [1, 1], [1, 1]])
|
|
pg.stop()
|
|
|
|
def test_action_clipping(self):
|
|
from ray.rllib.examples.env.random_env import RandomEnv
|
|
action_space = gym.spaces.Box(-2.0, 1.0, (3, ))
|
|
|
|
# Clipping: True (clip between Policy's action_space.low/high),
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: RandomEnv(config=dict(
|
|
action_space=action_space,
|
|
max_episode_len=10,
|
|
p_done=0.0,
|
|
check_action_bounds=True,
|
|
)),
|
|
policy=RandomPolicy,
|
|
policy_config=dict(
|
|
action_space=action_space,
|
|
ignore_action_bounds=True,
|
|
),
|
|
clip_actions=True,
|
|
batch_mode="complete_episodes")
|
|
sample = ev.sample()
|
|
# Check, whether the action bounds have been breached (expected).
|
|
# We still arrived here b/c we clipped according to the Env's action
|
|
# space.
|
|
self.assertGreater(np.max(sample["actions"]), action_space.high[0])
|
|
self.assertLess(np.min(sample["actions"]), action_space.low[0])
|
|
ev.stop()
|
|
|
|
# Clipping: False and RandomPolicy produces invalid actions.
|
|
# Expect Env to complain.
|
|
ev2 = RolloutWorker(
|
|
env_creator=lambda _: RandomEnv(config=dict(
|
|
action_space=action_space,
|
|
max_episode_len=10,
|
|
p_done=0.0,
|
|
check_action_bounds=True,
|
|
)),
|
|
policy=RandomPolicy,
|
|
policy_config=dict(
|
|
action_space=action_space,
|
|
ignore_action_bounds=True,
|
|
),
|
|
clip_actions=False, # <- should lead to Env complaining
|
|
batch_mode="complete_episodes")
|
|
self.assertRaisesRegex(ValueError, r"Illegal action", ev2.sample)
|
|
ev2.stop()
|
|
|
|
# Clipping: False and RandomPolicy produces valid (bounded) actions.
|
|
# Expect "actions" in SampleBatch to be unclipped.
|
|
ev3 = RolloutWorker(
|
|
env_creator=lambda _: RandomEnv(config=dict(
|
|
action_space=action_space,
|
|
max_episode_len=10,
|
|
p_done=0.0,
|
|
check_action_bounds=True,
|
|
)),
|
|
policy=RandomPolicy,
|
|
policy_config=dict(action_space=action_space),
|
|
# Should not be a problem as RandomPolicy abides to bounds.
|
|
clip_actions=False,
|
|
batch_mode="complete_episodes")
|
|
sample = ev3.sample()
|
|
self.assertGreater(np.min(sample["actions"]), action_space.low[0])
|
|
self.assertLess(np.max(sample["actions"]), action_space.high[0])
|
|
ev3.stop()
|
|
|
|
def test_reward_clipping(self):
|
|
# Clipping: True (clip between -1.0 and 1.0).
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv2(episode_length=10),
|
|
policy=MockPolicy,
|
|
clip_rewards=True,
|
|
batch_mode="complete_episodes")
|
|
self.assertEqual(max(ev.sample()["rewards"]), 1)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episode_reward_mean"], 1000)
|
|
ev.stop()
|
|
|
|
from ray.rllib.examples.env.random_env import RandomEnv
|
|
|
|
# Clipping in certain range (-2.0, 2.0).
|
|
ev2 = RolloutWorker(
|
|
env_creator=lambda _: RandomEnv(
|
|
dict(
|
|
reward_space=gym.spaces.Box(low=-10, high=10, shape=()),
|
|
p_done=0.0,
|
|
max_episode_len=10,
|
|
)),
|
|
policy=MockPolicy,
|
|
clip_rewards=2.0,
|
|
batch_mode="complete_episodes")
|
|
sample = ev2.sample()
|
|
self.assertEqual(max(sample["rewards"]), 2.0)
|
|
self.assertEqual(min(sample["rewards"]), -2.0)
|
|
self.assertLess(np.mean(sample["rewards"]), 0.5)
|
|
self.assertGreater(np.mean(sample["rewards"]), -0.5)
|
|
ev2.stop()
|
|
|
|
# Clipping: Off.
|
|
ev2 = RolloutWorker(
|
|
env_creator=lambda _: MockEnv2(episode_length=10),
|
|
policy=MockPolicy,
|
|
clip_rewards=False,
|
|
batch_mode="complete_episodes")
|
|
self.assertEqual(max(ev2.sample()["rewards"]), 100)
|
|
result2 = collect_metrics(ev2, [])
|
|
self.assertEqual(result2["episode_reward_mean"], 1000)
|
|
ev2.stop()
|
|
|
|
def test_hard_horizon(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv2(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes",
|
|
rollout_fragment_length=10,
|
|
episode_horizon=4,
|
|
soft_horizon=False)
|
|
samples = ev.sample()
|
|
# Three logical episodes and correct episode resets (always after 4
|
|
# steps).
|
|
self.assertEqual(len(set(samples["eps_id"])), 3)
|
|
for i in range(4):
|
|
self.assertEqual(np.argmax(samples["obs"][i]), i)
|
|
self.assertEqual(np.argmax(samples["obs"][4]), 0)
|
|
# 3 done values.
|
|
self.assertEqual(sum(samples["dones"]), 3)
|
|
ev.stop()
|
|
|
|
# A gym env's max_episode_steps is smaller than Trainer's horizon.
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes",
|
|
rollout_fragment_length=10,
|
|
episode_horizon=6,
|
|
soft_horizon=False)
|
|
samples = ev.sample()
|
|
# 12 steps due to `complete_episodes` batch_mode.
|
|
self.assertEqual(len(samples["eps_id"]), 12)
|
|
# Two logical episodes and correct episode resets (always after 6(!)
|
|
# steps).
|
|
self.assertEqual(len(set(samples["eps_id"])), 2)
|
|
# 2 done values after 6 and 12 steps.
|
|
check(samples["dones"], [
|
|
False, False, False, False, False, True, False, False, False,
|
|
False, False, True
|
|
])
|
|
ev.stop()
|
|
|
|
def test_soft_horizon(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes",
|
|
rollout_fragment_length=10,
|
|
episode_horizon=4,
|
|
soft_horizon=True)
|
|
samples = ev.sample()
|
|
# three logical episodes
|
|
self.assertEqual(len(set(samples["eps_id"])), 3)
|
|
# only 1 hard done value
|
|
self.assertEqual(sum(samples["dones"]), 1)
|
|
ev.stop()
|
|
|
|
def test_metrics(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes")
|
|
remote_ev = RolloutWorker.as_remote().remote(
|
|
env_creator=lambda _: MockEnv(episode_length=10),
|
|
policy=MockPolicy,
|
|
batch_mode="complete_episodes")
|
|
ev.sample()
|
|
ray.get(remote_ev.sample.remote())
|
|
result = collect_metrics(ev, [remote_ev])
|
|
self.assertEqual(result["episodes_this_iter"], 20)
|
|
self.assertEqual(result["episode_reward_mean"], 10)
|
|
ev.stop()
|
|
|
|
def test_async(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
sample_async=True,
|
|
policy=MockPolicy)
|
|
batch = ev.sample()
|
|
for key in ["obs", "actions", "rewards", "dones", "advantages"]:
|
|
self.assertIn(key, batch)
|
|
self.assertGreater(batch["advantages"][0], 1)
|
|
ev.stop()
|
|
|
|
def test_auto_vectorization(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda cfg: MockEnv(episode_length=20, config=cfg),
|
|
policy=MockPolicy,
|
|
batch_mode="truncate_episodes",
|
|
rollout_fragment_length=2,
|
|
num_envs=8)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 16)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 0)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 16)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 8)
|
|
indices = []
|
|
for env in ev.async_env.vector_env.envs:
|
|
self.assertEqual(env.unwrapped.config.worker_index, 0)
|
|
indices.append(env.unwrapped.config.vector_index)
|
|
self.assertEqual(indices, [0, 1, 2, 3, 4, 5, 6, 7])
|
|
ev.stop()
|
|
|
|
def test_batches_larger_when_vectorized(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(episode_length=8),
|
|
policy=MockPolicy,
|
|
batch_mode="truncate_episodes",
|
|
rollout_fragment_length=4,
|
|
num_envs=4)
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 16)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 0)
|
|
batch = ev.sample()
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 4)
|
|
ev.stop()
|
|
|
|
def test_vector_env_support(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockVectorEnv(episode_length=20, num_envs=8),
|
|
policy=MockPolicy,
|
|
batch_mode="truncate_episodes",
|
|
rollout_fragment_length=10)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 10)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 0)
|
|
for _ in range(8):
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 10)
|
|
result = collect_metrics(ev, [])
|
|
self.assertEqual(result["episodes_this_iter"], 8)
|
|
ev.stop()
|
|
|
|
def test_truncate_episodes(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(10),
|
|
policy=MockPolicy,
|
|
rollout_fragment_length=15,
|
|
batch_mode="truncate_episodes")
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 15)
|
|
ev.stop()
|
|
|
|
def test_complete_episodes(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(10),
|
|
policy=MockPolicy,
|
|
rollout_fragment_length=5,
|
|
batch_mode="complete_episodes")
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 10)
|
|
ev.stop()
|
|
|
|
def test_complete_episodes_packing(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(10),
|
|
policy=MockPolicy,
|
|
rollout_fragment_length=15,
|
|
batch_mode="complete_episodes")
|
|
batch = ev.sample()
|
|
self.assertEqual(batch.count, 20)
|
|
self.assertEqual(
|
|
batch["t"].tolist(),
|
|
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
|
ev.stop()
|
|
|
|
def test_filter_sync(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
sample_async=True,
|
|
observation_filter="ConcurrentMeanStdFilter")
|
|
time.sleep(2)
|
|
ev.sample()
|
|
filters = ev.get_filters(flush_after=True)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
self.assertNotEqual(obs_f.rs.n, 0)
|
|
self.assertNotEqual(obs_f.buffer.n, 0)
|
|
ev.stop()
|
|
|
|
def test_get_filters(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
sample_async=True,
|
|
observation_filter="ConcurrentMeanStdFilter")
|
|
self.sample_and_flush(ev)
|
|
filters = ev.get_filters(flush_after=False)
|
|
time.sleep(2)
|
|
filters2 = ev.get_filters(flush_after=False)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
obs_f2 = filters2[DEFAULT_POLICY_ID]
|
|
self.assertGreaterEqual(obs_f2.rs.n, obs_f.rs.n)
|
|
self.assertGreaterEqual(obs_f2.buffer.n, obs_f.buffer.n)
|
|
ev.stop()
|
|
|
|
def test_sync_filter(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: gym.make("CartPole-v0"),
|
|
policy=MockPolicy,
|
|
sample_async=True,
|
|
observation_filter="ConcurrentMeanStdFilter")
|
|
obs_f = self.sample_and_flush(ev)
|
|
|
|
# Current State
|
|
filters = ev.get_filters(flush_after=False)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
|
|
self.assertLessEqual(obs_f.buffer.n, 20)
|
|
|
|
new_obsf = obs_f.copy()
|
|
new_obsf.rs._n = 100
|
|
ev.sync_filters({DEFAULT_POLICY_ID: new_obsf})
|
|
filters = ev.get_filters(flush_after=False)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
self.assertGreaterEqual(obs_f.rs.n, 100)
|
|
self.assertLessEqual(obs_f.buffer.n, 20)
|
|
ev.stop()
|
|
|
|
def test_extra_python_envs(self):
|
|
extra_envs = {"env_key_1": "env_value_1", "env_key_2": "env_value_2"}
|
|
self.assertFalse("env_key_1" in os.environ)
|
|
self.assertFalse("env_key_2" in os.environ)
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockEnv(10),
|
|
policy=MockPolicy,
|
|
extra_python_environs=extra_envs)
|
|
self.assertTrue("env_key_1" in os.environ)
|
|
self.assertTrue("env_key_2" in os.environ)
|
|
ev.stop()
|
|
|
|
# reset to original
|
|
del os.environ["env_key_1"]
|
|
del os.environ["env_key_2"]
|
|
|
|
def test_no_env_seed(self):
|
|
ev = RolloutWorker(
|
|
env_creator=lambda _: MockVectorEnv(episode_length=20, num_envs=8),
|
|
policy=MockPolicy,
|
|
seed=1)
|
|
assert not hasattr(ev.env, "seed")
|
|
ev.stop()
|
|
|
|
def sample_and_flush(self, ev):
|
|
time.sleep(2)
|
|
ev.sample()
|
|
filters = ev.get_filters(flush_after=True)
|
|
obs_f = filters[DEFAULT_POLICY_ID]
|
|
self.assertNotEqual(obs_f.rs.n, 0)
|
|
self.assertNotEqual(obs_f.buffer.n, 0)
|
|
return obs_f
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|