mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
235 lines
9.7 KiB
Python
235 lines
9.7 KiB
Python
"""
|
|
Deep Q-Networks (DQN, Rainbow, Parametric DQN)
|
|
==============================================
|
|
|
|
This file defines the distributed Trainer class for the Deep Q-Networks
|
|
algorithm. See `dqn_[tf|torch]_policy.py` for the definition of the policies.
|
|
|
|
Detailed documentation:
|
|
https://docs.ray.io/en/master/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
|
|
""" # noqa: E501
|
|
|
|
import logging
|
|
from typing import List, Optional, Type
|
|
|
|
from ray.rllib.agents.dqn.dqn_tf_policy import DQNTFPolicy
|
|
from ray.rllib.agents.dqn.dqn_torch_policy import DQNTorchPolicy
|
|
from ray.rllib.agents.dqn.simple_q import SimpleQTrainer, \
|
|
DEFAULT_CONFIG as SIMPLEQ_DEFAULT_CONFIG, validate_config
|
|
from ray.rllib.agents.trainer import Trainer
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.evaluation.worker_set import WorkerSet
|
|
from ray.rllib.execution.concurrency_ops import Concurrently
|
|
from ray.rllib.execution.metric_ops import StandardMetricsReporting
|
|
from ray.rllib.execution.replay_ops import Replay, StoreToReplayBuffer
|
|
from ray.rllib.execution.rollout_ops import ParallelRollouts
|
|
from ray.rllib.execution.train_ops import TrainOneStep, UpdateTargetNetwork, \
|
|
MultiGPUTrainOneStep
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
|
|
from ray.rllib.utils.typing import TrainerConfigDict
|
|
from ray.util.iter import LocalIterator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# yapf: disable
|
|
# __sphinx_doc_begin__
|
|
DEFAULT_CONFIG = Trainer.merge_trainer_configs(
|
|
SIMPLEQ_DEFAULT_CONFIG,
|
|
{
|
|
# === Model ===
|
|
# Number of atoms for representing the distribution of return. When
|
|
# this is greater than 1, distributional Q-learning is used.
|
|
# the discrete supports are bounded by v_min and v_max
|
|
"num_atoms": 1,
|
|
"v_min": -10.0,
|
|
"v_max": 10.0,
|
|
# Whether to use noisy network
|
|
"noisy": False,
|
|
# control the initial value of noisy nets
|
|
"sigma0": 0.5,
|
|
# Whether to use dueling dqn
|
|
"dueling": True,
|
|
# Dense-layer setup for each the advantage branch and the value branch
|
|
# in a dueling architecture.
|
|
"hiddens": [256],
|
|
# Whether to use double dqn
|
|
"double_q": True,
|
|
# N-step Q learning
|
|
"n_step": 1,
|
|
|
|
# === Prioritized replay buffer ===
|
|
# If True prioritized replay buffer will be used.
|
|
"prioritized_replay": True,
|
|
# Alpha parameter for prioritized replay buffer.
|
|
"prioritized_replay_alpha": 0.6,
|
|
# Beta parameter for sampling from prioritized replay buffer.
|
|
"prioritized_replay_beta": 0.4,
|
|
# Final value of beta (by default, we use constant beta=0.4).
|
|
"final_prioritized_replay_beta": 0.4,
|
|
# Time steps over which the beta parameter is annealed.
|
|
"prioritized_replay_beta_annealing_timesteps": 20000,
|
|
# Epsilon to add to the TD errors when updating priorities.
|
|
"prioritized_replay_eps": 1e-6,
|
|
|
|
# Callback to run before learning on a multi-agent batch of
|
|
# experiences.
|
|
"before_learn_on_batch": None,
|
|
|
|
# The intensity with which to update the model (vs collecting samples
|
|
# from the env). If None, uses the "natural" value of:
|
|
# `train_batch_size` / (`rollout_fragment_length` x `num_workers` x
|
|
# `num_envs_per_worker`).
|
|
# If provided, will make sure that the ratio between ts inserted into
|
|
# and sampled from the buffer matches the given value.
|
|
# Example:
|
|
# training_intensity=1000.0
|
|
# train_batch_size=250 rollout_fragment_length=1
|
|
# num_workers=1 (or 0) num_envs_per_worker=1
|
|
# -> natural value = 250 / 1 = 250.0
|
|
# -> will make sure that replay+train op will be executed 4x as
|
|
# often as rollout+insert op (4 * 250 = 1000).
|
|
# See: rllib/agents/dqn/dqn.py::calculate_rr_weights for further
|
|
# details.
|
|
"training_intensity": None,
|
|
|
|
# === Parallelism ===
|
|
# Whether to compute priorities on workers.
|
|
"worker_side_prioritization": False,
|
|
},
|
|
_allow_unknown_configs=True,
|
|
)
|
|
# __sphinx_doc_end__
|
|
# yapf: enable
|
|
|
|
|
|
def calculate_rr_weights(config: TrainerConfigDict) -> List[float]:
|
|
"""Calculate the round robin weights for the rollout and train steps"""
|
|
if not config["training_intensity"]:
|
|
return [1, 1]
|
|
|
|
# Calculate the "native ratio" as:
|
|
# [train-batch-size] / [size of env-rolled-out sampled data]
|
|
# This is to set freshly rollout-collected data in relation to
|
|
# the data we pull from the replay buffer (which also contains old
|
|
# samples).
|
|
native_ratio = config["train_batch_size"] / \
|
|
(config["rollout_fragment_length"] *
|
|
config["num_envs_per_worker"] * config["num_workers"])
|
|
|
|
# Training intensity is specified in terms of
|
|
# (steps_replayed / steps_sampled), so adjust for the native ratio.
|
|
weights = [1, config["training_intensity"] / native_ratio]
|
|
return weights
|
|
|
|
|
|
class DQNTrainer(SimpleQTrainer):
|
|
@classmethod
|
|
@override(SimpleQTrainer)
|
|
def get_default_config(cls) -> TrainerConfigDict:
|
|
return DEFAULT_CONFIG
|
|
|
|
@override(SimpleQTrainer)
|
|
def get_default_policy_class(
|
|
self, config: TrainerConfigDict) -> Optional[Type[Policy]]:
|
|
if config["framework"] == "torch":
|
|
return DQNTorchPolicy
|
|
else:
|
|
return DQNTFPolicy
|
|
|
|
@staticmethod
|
|
@override(SimpleQTrainer)
|
|
def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
|
|
**kwargs) -> LocalIterator[dict]:
|
|
assert "local_replay_buffer" in kwargs, (
|
|
"DQN's execution plan requires a local replay buffer.")
|
|
|
|
# Assign to Trainer, so we can store the MultiAgentReplayBuffer's
|
|
# data when we save checkpoints.
|
|
local_replay_buffer = kwargs["local_replay_buffer"]
|
|
|
|
rollouts = ParallelRollouts(workers, mode="bulk_sync")
|
|
|
|
# We execute the following steps concurrently:
|
|
# (1) Generate rollouts and store them in our local replay buffer.
|
|
# Calling next() on store_op drives this.
|
|
store_op = rollouts.for_each(
|
|
StoreToReplayBuffer(local_buffer=local_replay_buffer))
|
|
|
|
def update_prio(item):
|
|
samples, info_dict = item
|
|
if config.get("prioritized_replay"):
|
|
prio_dict = {}
|
|
for policy_id, info in info_dict.items():
|
|
# TODO(sven): This is currently structured differently for
|
|
# torch/tf. Clean up these results/info dicts across
|
|
# policies (note: fixing this in torch_policy.py will
|
|
# break e.g. DDPPO!).
|
|
td_error = info.get(
|
|
"td_error", info[LEARNER_STATS_KEY].get("td_error"))
|
|
samples.policy_batches[policy_id].set_get_interceptor(None)
|
|
batch_indices = samples.policy_batches[policy_id].get(
|
|
"batch_indexes")
|
|
# In case the buffer stores sequences, TD-error could
|
|
# already be calculated per sequence chunk.
|
|
if len(batch_indices) != len(td_error):
|
|
T = local_replay_buffer.replay_sequence_length
|
|
assert len(batch_indices) > len(
|
|
td_error) and len(batch_indices) % T == 0
|
|
batch_indices = batch_indices.reshape([-1, T])[:, 0]
|
|
assert len(batch_indices) == len(td_error)
|
|
prio_dict[policy_id] = (batch_indices, td_error)
|
|
local_replay_buffer.update_priorities(prio_dict)
|
|
return info_dict
|
|
|
|
# (2) Read and train on experiences from the replay buffer. Every batch
|
|
# returned from the LocalReplay() iterator is passed to TrainOneStep to
|
|
# take a SGD step, and then we decide whether to update the target
|
|
# network.
|
|
post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)
|
|
|
|
if config["simple_optimizer"]:
|
|
train_step_op = TrainOneStep(workers)
|
|
else:
|
|
train_step_op = MultiGPUTrainOneStep(
|
|
workers=workers,
|
|
sgd_minibatch_size=config["train_batch_size"],
|
|
num_sgd_iter=1,
|
|
num_gpus=config["num_gpus"],
|
|
shuffle_sequences=True,
|
|
_fake_gpus=config["_fake_gpus"],
|
|
framework=config.get("framework"))
|
|
|
|
replay_op = Replay(local_buffer=local_replay_buffer) \
|
|
.for_each(lambda x: post_fn(x, workers, config)) \
|
|
.for_each(train_step_op) \
|
|
.for_each(update_prio) \
|
|
.for_each(UpdateTargetNetwork(
|
|
workers, config["target_network_update_freq"]))
|
|
|
|
# Alternate deterministically between (1) and (2).
|
|
# Only return the output of (2) since training metrics are not
|
|
# available until (2) runs.
|
|
train_op = Concurrently(
|
|
[store_op, replay_op],
|
|
mode="round_robin",
|
|
output_indexes=[1],
|
|
round_robin_weights=calculate_rr_weights(config))
|
|
|
|
return StandardMetricsReporting(train_op, workers, config)
|
|
|
|
|
|
# TODO: Deprecate this in favor of using SimpleQ as base off-policy trainer.
|
|
# Build a generic off-policy trainer. Other trainers (such as DDPGTrainer)
|
|
# may build on top of it.
|
|
GenericOffPolicyTrainer = build_trainer(
|
|
name="GenericOffPolicyTrainer",
|
|
# No Policy preference.
|
|
default_policy=None,
|
|
get_policy_class=None,
|
|
# Use SimpleQ's config + validation and DQN's exec. plan as base for
|
|
# all other off-policy algos.
|
|
default_config=DEFAULT_CONFIG,
|
|
validate_config=validate_config,
|
|
execution_plan=DQNTrainer.execution_plan)
|