ray/rllib/agents/dqn/dqn.py

235 lines
9.7 KiB
Python

"""
Deep Q-Networks (DQN, Rainbow, Parametric DQN)
==============================================
This file defines the distributed Trainer class for the Deep Q-Networks
algorithm. See `dqn_[tf|torch]_policy.py` for the definition of the policies.
Detailed documentation:
https://docs.ray.io/en/master/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
""" # noqa: E501
import logging
from typing import List, Optional, Type
from ray.rllib.agents.dqn.dqn_tf_policy import DQNTFPolicy
from ray.rllib.agents.dqn.dqn_torch_policy import DQNTorchPolicy
from ray.rllib.agents.dqn.simple_q import SimpleQTrainer, \
DEFAULT_CONFIG as SIMPLEQ_DEFAULT_CONFIG, validate_config
from ray.rllib.agents.trainer import Trainer
from ray.rllib.agents.trainer_template import build_trainer
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.execution.concurrency_ops import Concurrently
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.execution.replay_ops import Replay, StoreToReplayBuffer
from ray.rllib.execution.rollout_ops import ParallelRollouts
from ray.rllib.execution.train_ops import TrainOneStep, UpdateTargetNetwork, \
MultiGPUTrainOneStep
from ray.rllib.policy.policy import Policy
from ray.rllib.utils.annotations import override
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.rllib.utils.typing import TrainerConfigDict
from ray.util.iter import LocalIterator
logger = logging.getLogger(__name__)
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = Trainer.merge_trainer_configs(
SIMPLEQ_DEFAULT_CONFIG,
{
# === Model ===
# Number of atoms for representing the distribution of return. When
# this is greater than 1, distributional Q-learning is used.
# the discrete supports are bounded by v_min and v_max
"num_atoms": 1,
"v_min": -10.0,
"v_max": 10.0,
# Whether to use noisy network
"noisy": False,
# control the initial value of noisy nets
"sigma0": 0.5,
# Whether to use dueling dqn
"dueling": True,
# Dense-layer setup for each the advantage branch and the value branch
# in a dueling architecture.
"hiddens": [256],
# Whether to use double dqn
"double_q": True,
# N-step Q learning
"n_step": 1,
# === Prioritized replay buffer ===
# If True prioritized replay buffer will be used.
"prioritized_replay": True,
# Alpha parameter for prioritized replay buffer.
"prioritized_replay_alpha": 0.6,
# Beta parameter for sampling from prioritized replay buffer.
"prioritized_replay_beta": 0.4,
# Final value of beta (by default, we use constant beta=0.4).
"final_prioritized_replay_beta": 0.4,
# Time steps over which the beta parameter is annealed.
"prioritized_replay_beta_annealing_timesteps": 20000,
# Epsilon to add to the TD errors when updating priorities.
"prioritized_replay_eps": 1e-6,
# Callback to run before learning on a multi-agent batch of
# experiences.
"before_learn_on_batch": None,
# The intensity with which to update the model (vs collecting samples
# from the env). If None, uses the "natural" value of:
# `train_batch_size` / (`rollout_fragment_length` x `num_workers` x
# `num_envs_per_worker`).
# If provided, will make sure that the ratio between ts inserted into
# and sampled from the buffer matches the given value.
# Example:
# training_intensity=1000.0
# train_batch_size=250 rollout_fragment_length=1
# num_workers=1 (or 0) num_envs_per_worker=1
# -> natural value = 250 / 1 = 250.0
# -> will make sure that replay+train op will be executed 4x as
# often as rollout+insert op (4 * 250 = 1000).
# See: rllib/agents/dqn/dqn.py::calculate_rr_weights for further
# details.
"training_intensity": None,
# === Parallelism ===
# Whether to compute priorities on workers.
"worker_side_prioritization": False,
},
_allow_unknown_configs=True,
)
# __sphinx_doc_end__
# yapf: enable
def calculate_rr_weights(config: TrainerConfigDict) -> List[float]:
"""Calculate the round robin weights for the rollout and train steps"""
if not config["training_intensity"]:
return [1, 1]
# Calculate the "native ratio" as:
# [train-batch-size] / [size of env-rolled-out sampled data]
# This is to set freshly rollout-collected data in relation to
# the data we pull from the replay buffer (which also contains old
# samples).
native_ratio = config["train_batch_size"] / \
(config["rollout_fragment_length"] *
config["num_envs_per_worker"] * config["num_workers"])
# Training intensity is specified in terms of
# (steps_replayed / steps_sampled), so adjust for the native ratio.
weights = [1, config["training_intensity"] / native_ratio]
return weights
class DQNTrainer(SimpleQTrainer):
@classmethod
@override(SimpleQTrainer)
def get_default_config(cls) -> TrainerConfigDict:
return DEFAULT_CONFIG
@override(SimpleQTrainer)
def get_default_policy_class(
self, config: TrainerConfigDict) -> Optional[Type[Policy]]:
if config["framework"] == "torch":
return DQNTorchPolicy
else:
return DQNTFPolicy
@staticmethod
@override(SimpleQTrainer)
def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
**kwargs) -> LocalIterator[dict]:
assert "local_replay_buffer" in kwargs, (
"DQN's execution plan requires a local replay buffer.")
# Assign to Trainer, so we can store the MultiAgentReplayBuffer's
# data when we save checkpoints.
local_replay_buffer = kwargs["local_replay_buffer"]
rollouts = ParallelRollouts(workers, mode="bulk_sync")
# We execute the following steps concurrently:
# (1) Generate rollouts and store them in our local replay buffer.
# Calling next() on store_op drives this.
store_op = rollouts.for_each(
StoreToReplayBuffer(local_buffer=local_replay_buffer))
def update_prio(item):
samples, info_dict = item
if config.get("prioritized_replay"):
prio_dict = {}
for policy_id, info in info_dict.items():
# TODO(sven): This is currently structured differently for
# torch/tf. Clean up these results/info dicts across
# policies (note: fixing this in torch_policy.py will
# break e.g. DDPPO!).
td_error = info.get(
"td_error", info[LEARNER_STATS_KEY].get("td_error"))
samples.policy_batches[policy_id].set_get_interceptor(None)
batch_indices = samples.policy_batches[policy_id].get(
"batch_indexes")
# In case the buffer stores sequences, TD-error could
# already be calculated per sequence chunk.
if len(batch_indices) != len(td_error):
T = local_replay_buffer.replay_sequence_length
assert len(batch_indices) > len(
td_error) and len(batch_indices) % T == 0
batch_indices = batch_indices.reshape([-1, T])[:, 0]
assert len(batch_indices) == len(td_error)
prio_dict[policy_id] = (batch_indices, td_error)
local_replay_buffer.update_priorities(prio_dict)
return info_dict
# (2) Read and train on experiences from the replay buffer. Every batch
# returned from the LocalReplay() iterator is passed to TrainOneStep to
# take a SGD step, and then we decide whether to update the target
# network.
post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)
if config["simple_optimizer"]:
train_step_op = TrainOneStep(workers)
else:
train_step_op = MultiGPUTrainOneStep(
workers=workers,
sgd_minibatch_size=config["train_batch_size"],
num_sgd_iter=1,
num_gpus=config["num_gpus"],
shuffle_sequences=True,
_fake_gpus=config["_fake_gpus"],
framework=config.get("framework"))
replay_op = Replay(local_buffer=local_replay_buffer) \
.for_each(lambda x: post_fn(x, workers, config)) \
.for_each(train_step_op) \
.for_each(update_prio) \
.for_each(UpdateTargetNetwork(
workers, config["target_network_update_freq"]))
# Alternate deterministically between (1) and (2).
# Only return the output of (2) since training metrics are not
# available until (2) runs.
train_op = Concurrently(
[store_op, replay_op],
mode="round_robin",
output_indexes=[1],
round_robin_weights=calculate_rr_weights(config))
return StandardMetricsReporting(train_op, workers, config)
# TODO: Deprecate this in favor of using SimpleQ as base off-policy trainer.
# Build a generic off-policy trainer. Other trainers (such as DDPGTrainer)
# may build on top of it.
GenericOffPolicyTrainer = build_trainer(
name="GenericOffPolicyTrainer",
# No Policy preference.
default_policy=None,
get_policy_class=None,
# Use SimpleQ's config + validation and DQN's exec. plan as base for
# all other off-policy algos.
default_config=DEFAULT_CONFIG,
validate_config=validate_config,
execution_plan=DQNTrainer.execution_plan)