Commit graph

54 commits

Author SHA1 Message Date
Sven Mika
0de41e4a6b
[RLlib] Trainer sub-class QMIX/MAML/MB-MPO (instead of build_trainer). (#20639) 2021-12-02 13:17:10 +01:00
Sven Mika
3d2e27485b
[RLlib] Trainer sub-class DQN/SimpleQ/APEX-DQN/R2D2 (instead of using build_trainer). (#20633) 2021-11-30 18:05:44 +01:00
Artur Niederfahrenhorst
d07e50e957
[RLlib] Replay buffer API (cleanups; docstrings; renames; move into rllib/execution/buffers dir) (#20552) 2021-11-19 11:57:37 +01:00
gjoliver
d81885c1f1
[RLlib] Fix all the CI tests that were broken by is_training and replay buffer changes; re-comment-in the failing RLlib tests (#19809)
* Fix DDPG, since it is based on GenericOffPolicyTrainer.

* Fix QMix, SAC, and MADDPA too.

* Undo QMix change.

* Fix DQN input batch type. Always use SampleBatch.

* apex ddpg should not use replay_buffer_config yet.

* Make eager tf policy to use SampleBatch.

* lint

* LINT.

* Re-enable RLlib broken tests to make sure things work ok now.

* fixes.

Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-10-28 18:06:47 +02:00
gjoliver
99a0088233
[RLlib] Unify the way we create local replay buffer for all agents (#19627)
* [RLlib] Unify the way we create and use LocalReplayBuffer for all the agents.

This change
1. Get rid of the try...except clause when we call execution_plan(),
   and get rid of the Deprecation warning as a result.
2. Fix the execution_plan() call in Trainer._try_recover() too.
3. Most importantly, makes it much easier to create and use different types
   of local replay buffers for all our agents.
   E.g., allow us to easily create a reservoir sampling replay buffer for
   APPO agent for Riot in the near future.
* Introduce explicit configuration for replay buffer types.
* Fix is_training key error.
* actually deprecate buffer_size field.
2021-10-26 20:56:02 +02:00
gjoliver
89fbfc00f8
[RLlib] Some minor cleanups (buffer buffer_size -> capacity and others). (#19623) 2021-10-25 09:42:39 +02:00
Sven Mika
ed85f59194
[RLlib] Unify all RLlib Trainer.train() -> results[info][learner][policy ID][learner_stats] and add structure tests. (#18879) 2021-09-30 16:39:05 +02:00
Sven Mika
9c9b482661
[RLlib] Allow n-step > 1 and prio. replay for R2D2 and RNNSAC. (#18939) 2021-09-29 21:31:34 +02:00
Sven Mika
4888d7c9af
[RLlib] Replay buffers: Add config option to store contents in checkpoints. (#17999) 2021-08-31 12:21:49 +02:00
Thomas Lecat
c02f91fa2d
[RLlib] Ape-X doesn't take the value of prioritized_replay into account (#17541) 2021-08-16 22:18:08 +02:00
Sven Mika
5a313ba3d6
[RLlib] Refactor: All tf static graph code should reside inside Policy class. (#17169) 2021-07-20 14:58:13 -04:00
Sven Mika
1fd0eb805e
[RLlib] Redo fix bug normalize vs unsquash actions (original PR made log-likelihood test flakey). (#17014) 2021-07-13 14:01:30 -04:00
Amog Kamsetty
bc33dc7e96
Revert "[RLlib] Fix bug in policy.py: normalize_actions=True has to call unsquash_action, not normalize_action." (#17002)
This reverts commit 7862dd64ea.
2021-07-12 11:09:14 -07:00
Sven Mika
7862dd64ea
[RLlib] Fix bug in policy.py: normalize_actions=True has to call unsquash_action, not normalize_action. (#16774) 2021-07-08 17:31:34 +02:00
Sven Mika
7318439c3d
[RLlib] DQN native_ratio (for training intensity) incorrect (discussion 1763). (#15436)
Thanks @Manuscrit !
2021-04-22 11:06:29 +02:00
Sven Mika
4f66309e19
[RLlib] Redo issue 14533 tf enable eager exec (#14984) 2021-03-29 20:07:44 +02:00
SangBin Cho
fa5f961d5e
Revert "[RLlib] Issue 14533: tf.enable_eager_execution() must be called at beginning. (#14737)" (#14918)
This reverts commit 3e389d5812.
2021-03-25 00:42:01 -07:00
Sven Mika
3e389d5812
[RLlib] Issue 14533: tf.enable_eager_execution() must be called at beginning. (#14737) 2021-03-24 12:54:27 +01:00
Sven Mika
732197e23a
[RLlib] Multi-GPU for tf-DQN/PG/A2C. (#13393) 2021-03-08 15:41:27 +01:00
Sven Mika
8000258333
[RLlib] R2D2 Implementation. (#13933) 2021-02-25 12:18:11 +01:00
Sven Mika
19c8033df2
[RLlib] Fix most remaining RLlib algos for running with trajectory view API. (#12366)
* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* LINT and fixes.
MB-MPO and MAML not working yet.

* wip

* update

* update

* rmeove

* remove dep

* higher

* Update requirements_rllib.txt

* Update requirements_rllib.txt

* relpos

* no mbmpo

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-12-01 17:41:10 -08:00
Sven Mika
b6b54f1c81
[RLlib] Trajectory view API: enable by default for SAC, DDPG, DQN, SimpleQ (#11827) 2020-11-16 10:54:35 -08:00
Sumanth Ratna
9da7bdcc8e
Use master for links to docs in source (#10866) 2020-09-19 00:30:45 -07:00
desktable
4ccfd07a61
[RLlib] Add docstrings for agents/dqn (#10710) 2020-09-15 12:37:07 +02:00
desktable
799318d7d7
[RLlib] Add type annotations for agents/dqn (#10626) 2020-09-09 18:55:26 +02:00
Sven Mika
28ab797cf5
[RLlib] Deprecate old classes, methods, functions, config keys (in prep for RLlib 1.0). (#10544) 2020-09-06 10:58:00 +02:00
Sven Mika
78dfed2683
[RLlib] Issue 8384: QMIX doesn't learn anything. (#9527) 2020-07-17 12:14:34 +02:00
Piotr Januszewski
155cc81e40
Clarify training intensity configuration docstring (#9244) (#9306) 2020-07-05 20:07:27 -07:00
Eric Liang
34bae27ac7
[rllib] Flexible multi-agent replay modes and replay_sequence_length (#8893) 2020-06-12 20:17:27 -07:00
Sven Mika
2746fc0476
[RLlib] Auto-framework, retire use_pytorch in favor of framework=... (#8520) 2020-05-27 16:19:13 +02:00
Eric Liang
9a83908c46
[rllib] Deprecate policy optimizers (#8345) 2020-05-21 10:16:18 -07:00
Eric Liang
aa7a58e92f
[rllib] Support training intensity for dqn / apex (#8396) 2020-05-20 11:22:30 -07:00
Eric Liang
2c599dbf05
[rllib] Port QMIX, MADDPG to new execution API (#8344) 2020-05-07 23:41:10 -07:00
Eric Liang
b14cc16616
[rllib] Enable functional execution workflow API by default (#8221) 2020-05-05 12:36:42 -07:00
Eric Liang
2298f6fb40
[rllib] Port DQN/Ape-X to training workflow api (#8077) 2020-04-23 12:39:19 -07:00
Sven Mika
428516056a
[RLlib] SAC Torch (incl. Atari learning) (#7984)
* Policy-classes cleanup and torch/tf unification.
- Make Policy abstract.
- Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch).
- Move some methods and vars to base Policy
  (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more.

* Fix `clip_action` import from Policy (should probably be moved into utils altogether).

* - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy).
- Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces).

* Add `config` to c'tor call to TFPolicy.

* Add missing `config` to c'tor call to TFPolicy in marvil_policy.py.

* Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract).

* Fix LINT errors in Policy classes.

* Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py.

* policy.py LINT errors.

* Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases).

* policy.py
- Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented).
- Fix docstring of `num_state_tensors`.

* Make QMIX torch Policy a child of TorchPolicy (instead of Policy).

* QMixPolicy add empty implementations of abstract Policy methods.

* Store Policy's config in self.config in base Policy c'tor.

* - Make only compute_actions in base Policy's an abstractmethod and provide pass
implementation to all other methods if not defined.
- Fix state_batches=None (most Policies don't have internal states).

* Cartpole tf learning.

* Cartpole tf AND torch learning (in ~ same ts).

* Cartpole tf AND torch learning (in ~ same ts). 2

* Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3

* Cartpole tf AND torch learning (in ~ same ts). 4

* Cartpole tf AND torch learning (in ~ same ts). 5

* Cartpole tf AND torch learning (in ~ same ts). 6

* Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning.

* WIP.

* WIP.

* SAC torch learning Pendulum.

* WIP.

* SAC torch and tf learning Pendulum and Cartpole after cleanup.

* WIP.

* LINT.

* LINT.

* SAC: Move policy.target_model to policy.device as well.

* Fixes and cleanup.

* Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default).

* Fixes and LINT.

* Fixes and LINT.

* Fix and LINT.

* WIP.

* Test fixes and LINT.

* Fixes and LINT.

Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
Eric Liang
31b40b00f6
[rllib] Pull out experimental dsl into rllib.execution module, add initial unit tests (#7958) 2020-04-10 00:56:08 -07:00
Sven Mika
22ccc43670
[RLlib] DQN torch version. (#7597)
* Fix.

* Rollback.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix.

* Fix.

* Fix.

* WIP.

* WIP.

* Fix.

* Test case fixes.

* Test case fixes and LINT.

* Test case fixes and LINT.

* Rollback.

* WIP.

* WIP.

* Test case fixes.

* Fix.

* Fix.

* Fix.

* Add regression test for DQN w/ param noise.

* Fixes and LINT.

* Fixes and LINT.

* Fixes and LINT.

* Fixes and LINT.

* Fixes and LINT.

* Comment

* Regression test case.

* WIP.

* WIP.

* LINT.

* LINT.

* WIP.

* Fix.

* Fix.

* Fix.

* LINT.

* Fix (SAC does currently not support eager).

* Fix.

* WIP.

* LINT.

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* WIP.

* Fix.

* LINT.

* LINT.

* Fix and LINT.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Fix.

* Fix and LINT.

* Update rllib/utils/exploration/exploration.py

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Fixes.

* WIP.

* LINT.

* Fixes and LINT.

* LINT and fixes.

* LINT.

* Move action_dist back into torch extra_action_out_fn and LINT.

* Working SimpleQ learning cartpole on both torch AND tf.

* Working Rainbow learning cartpole on tf.

* Working Rainbow learning cartpole on tf.

* WIP.

* LINT.

* LINT.

* Update docs and add torch to APEX test.

* LINT.

* Fix.

* LINT.

* Fix.

* Fix.

* Fix and docstrings.

* Fix broken RLlib tests in master.

* Split BAZEL learning tests into cartpole and pendulum (reached the 60min barrier).

* Fix error_outputs option in BAZEL for RLlib regression tests.

* Fix.

* Tune param-noise tests.

* LINT.

* Fix.

* Fix.

* test

* test

* test

* Fix.

* Fix.

* WIP.

* WIP.

* WIP.

* WIP.

* LINT.

* WIP.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-04-06 11:56:16 -07:00
Sven Mika
5537fe13b0
[RLlib] Exploration API: ParamNoise Integration into DQN; working example/test cases. (#7814) 2020-04-03 10:44:25 -07:00
Eric Liang
9392cdbf74
[rllib] Add high-performance external application connector (#7641) 2020-03-20 12:43:57 -07:00
Eric Liang
dd70720578
[rllib] Rename sample_batch_size => rollout_fragment_length (#7503)
* bulk rename

* deprecation warn

* update doc

* update fig

* line length

* rename

* make pytest comptaible

* fix test

* fi sys

* rename

* wip

* fix more

* lint

* update svg

* comments

* lint

* fix use of batch steps
2020-03-14 12:05:04 -07:00
Eric Liang
f5d12a958b
[rllib] Port Ape-X to distributed execution API (#7497) 2020-03-12 00:54:08 -07:00
Eric Liang
a644060daa
[rllib] First pass at pipeline implementation of DQN (#7433)
* wip iters

* add test

* speed up

* update docs

* document it

* support serial sampling

* add test

* spacing

* annotate it

* update

* rename to pipeline

* comment

* iter2 wip

* update

* update

* context test

* update

* fix

* fix

* a3c pipeline

* doc

* update

* move timer

* comment

* add piepline test

* fix

* clean up

* document

* iter s

* wip dqn

* wip

* wip

* metrics

* metrics rename

* metrics ctx

* wip

* constants

* add todo

* suppport .union

* wip

* support union

* remove prints

* add todo

* remove auto timer

* fix up

* fix pipeline test

* typing

* fix breakage

* remove bad assert

* wip

* fix multiagent example

* fixapply

* update a3c

* remove a2c pl

* 0 workers

* wip

* wip

* share metrics

* wip

* wip

* doc

* fix weight sync and global var updates

* mode

* fix

* fix

* doc

* fix
2020-03-07 14:47:58 -08:00
Sven Mika
510c850651
[RLlib] SAC add discrete action support. (#7320)
* Exploration API (+EpsilonGreedy sub-class).

* Exploration API (+EpsilonGreedy sub-class).

* Cleanup/LINT.

* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).

* Add `error` option to deprecation_warning().

* WIP.

* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.

* WIP.

* LINT.

* WIP.

* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.

* Fix bug in sampler.py in case Policy has self.exploration = None

* Update rllib/agents/dqn/dqn.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Update rllib/agents/trainer.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Change requests.

* LINT

* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set

* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).

* Update rllib/evaluation/worker_set.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Review fixes.

* Fix default value for DQN's exploration spec.

* LINT

* Fix recursion bug (wrong parent c'tor).

* Do not pass timestep to get_exploration_info.

* Update tf_policy.py

* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.

* Bug fix tf-action-dist

* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).

* Switch off exploration when getting action probs from off-policy-estimator's policy.

* LINT

* Fix test_checkpoint_restore.py.

* Deprecate all SAC exploration (unused) configs.

* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.

* WIP.

* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).

* WIP.

* Trigger re-test (flaky checkpoint-restore test).

* WIP.

* WIP.

* Add test case for deterministic action sampling in PPO.

* bug fix.

* Added deterministic test cases for different Agents.

* Fix problem with TupleActions in dynamic-tf-policy.

* Separate supported_spaces tests so they can be run separately for easier debugging.

* LINT.

* Fix autoregressive_action_dist.py test case.

* Re-test.

* Fix.

* Remove duplicate py_test rule from bazel.

* LINT.

* WIP.

* WIP.

* SAC fix.

* SAC fix.

* WIP.

* WIP.

* WIP.

* FIX 2 examples tests.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Renamed test file.

* WIP.

* Add unittest.main.

* Make action_dist_class mandatory.

* fix

* FIX.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix explorations test case (contextlib cannot find its own nullcontext??).

* Force torch to be installed for QMIX.

* LINT.

* Fix determine_tests_to_run.py.

* Fix determine_tests_to_run.py.

* WIP

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Rename some stuff.

* Rename some stuff.

* WIP.

* update.

* WIP.

* Gumbel Softmax Dist.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP

* WIP.

* WIP.

* Hypertune.

* Hypertune.

* Hypertune.

* Lock-in.

* Cleanup.

* LINT.

* Fix.

* Update rllib/policy/eager_tf_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Fix items from review comments.

* Add dm_tree to RLlib dependencies.

* Add dm_tree to RLlib dependencies.

* Fix DQN test cases ((Torch)Categorical).

* Fix wrong pip install.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
2020-03-06 10:37:12 -08:00
Sven Mika
83e06cd30a
[RLlib] DDPG refactor and Exploration API action noise classes. (#7314)
* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix

* WIP.

* Add TD3 quick Pendulum regresison.

* Cleanup.

* Fix.

* LINT.

* Fix.

* Sort quick_learning test cases, add TD3.

* Sort quick_learning test cases, add TD3.

* Revert test_checkpoint_restore.py (debugging) changes.

* Fix old soft_q settings in documentation and test configs.

* More doc fixes.

* Fix test case.

* Fix test case.

* Lower test load.

* WIP.
2020-03-01 11:53:35 -08:00
Sven Mika
d537e9f0d8
[RLlib] Exploration API: merge deterministic flag with exploration classes (SoftQ and StochasticSampling). (#7155) 2020-02-19 12:18:45 -08:00
Sven Mika
6e1c3ea824
[RLlib] Exploration API (+EpsilonGreedy sub-class). (#6974) 2020-02-10 15:22:07 -08:00
Sven Mika
2ccf08ad10
[RLlib] Bug fix: DQN goes into negative epsilon values after reaching explora… (#6971)
* Bug fix: DQN goes into negative epsilon values after reaching exploration percentage.

* Add `epsilon_initial_eps` to SAC to pass test_nested_spaces.py.

* Add `exploration_initial_eps` to QMIX default config.
2020-01-31 09:54:12 -08:00
Sven Mika
e6227082bd [RLlib] Add torch flag to train.py (#6807) 2020-01-17 18:48:44 -08:00
Sven
60d4d5e1aa Remove future imports (#6724)
* Remove all __future__ imports from RLlib.

* Remove (object) again from tf_run_builder.py::TFRunBuilder.

* Fix 2xLINT warnings.

* Fix broken appo_policy import (must be appo_tf_policy)

* Remove future imports from all other ray files (not just RLlib).

* Remove future imports from all other ray files (not just RLlib).

* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).

* Add two empty lines before Schedule class.

* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
2020-01-09 00:15:48 -08:00