mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
170 lines
4.9 KiB
Python
170 lines
4.9 KiB
Python
"""The two-step game from QMIX: https://arxiv.org/pdf/1803.11485.pdf
|
|
|
|
Configurations you can try:
|
|
- normal policy gradients (PG)
|
|
- contrib/MADDPG
|
|
- QMIX
|
|
|
|
See also: centralized_critic.py for centralized critic PPO on this game.
|
|
"""
|
|
|
|
import argparse
|
|
from gym.spaces import Dict, Discrete, Tuple, MultiDiscrete
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.tune import register_env
|
|
from ray.rllib.env.multi_agent_env import ENV_STATE
|
|
from ray.rllib.examples.env.two_step_game import TwoStepGame
|
|
from ray.rllib.policy.policy import PolicySpec
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run", type=str, default="PG", help="The RLlib-registered algorithm to use."
|
|
)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--mixer",
|
|
type=str,
|
|
default="qmix",
|
|
choices=["qmix", "vdn", "none"],
|
|
help="The mixer model to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=200, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=70000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=8.0, help="Reward at which we stop training."
|
|
)
|
|
parser.add_argument(
|
|
"--local-mode",
|
|
action="store_true",
|
|
help="Init Ray in local mode for easier debugging.",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
|
|
|
|
grouping = {
|
|
"group_1": [0, 1],
|
|
}
|
|
obs_space = Tuple(
|
|
[
|
|
Dict(
|
|
{
|
|
"obs": MultiDiscrete([2, 2, 2, 3]),
|
|
ENV_STATE: MultiDiscrete([2, 2, 2]),
|
|
}
|
|
),
|
|
Dict(
|
|
{
|
|
"obs": MultiDiscrete([2, 2, 2, 3]),
|
|
ENV_STATE: MultiDiscrete([2, 2, 2]),
|
|
}
|
|
),
|
|
]
|
|
)
|
|
act_space = Tuple(
|
|
[
|
|
TwoStepGame.action_space,
|
|
TwoStepGame.action_space,
|
|
]
|
|
)
|
|
register_env(
|
|
"grouped_twostep",
|
|
lambda config: TwoStepGame(config).with_agent_groups(
|
|
grouping, obs_space=obs_space, act_space=act_space
|
|
),
|
|
)
|
|
|
|
if args.run == "contrib/MADDPG":
|
|
obs_space = Discrete(6)
|
|
act_space = TwoStepGame.action_space
|
|
config = {
|
|
"learning_starts": 100,
|
|
"env_config": {
|
|
"actions_are_logits": True,
|
|
},
|
|
"multiagent": {
|
|
"policies": {
|
|
"pol1": PolicySpec(
|
|
observation_space=obs_space,
|
|
action_space=act_space,
|
|
config={"agent_id": 0},
|
|
),
|
|
"pol2": PolicySpec(
|
|
observation_space=obs_space,
|
|
action_space=act_space,
|
|
config={"agent_id": 1},
|
|
),
|
|
},
|
|
"policy_mapping_fn": (lambda aid, **kwargs: "pol2" if aid else "pol1"),
|
|
},
|
|
"framework": args.framework,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
}
|
|
group = False
|
|
elif args.run == "QMIX":
|
|
config = {
|
|
"rollout_fragment_length": 4,
|
|
"train_batch_size": 32,
|
|
"exploration_config": {
|
|
"final_epsilon": 0.0,
|
|
},
|
|
"num_workers": 0,
|
|
"mixer": args.mixer,
|
|
"env_config": {
|
|
"separate_state_space": True,
|
|
"one_hot_state_encoding": True,
|
|
},
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
}
|
|
group = True
|
|
else:
|
|
config = {
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"framework": args.framework,
|
|
}
|
|
group = False
|
|
|
|
stop = {
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"training_iteration": args.stop_iters,
|
|
}
|
|
|
|
config = dict(
|
|
config,
|
|
**{
|
|
"env": "grouped_twostep" if group else TwoStepGame,
|
|
}
|
|
)
|
|
|
|
results = tune.run(args.run, stop=stop, config=config, verbose=2)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|