mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
210 lines
7 KiB
Python
210 lines
7 KiB
Python
"""
|
|
Example of a custom gym environment and model. Run this for a demo.
|
|
|
|
This example shows:
|
|
- using a custom environment
|
|
- using a custom model
|
|
- using Tune for grid search to try different learning rates
|
|
|
|
You can visualize experiment results in ~/ray_results using TensorBoard.
|
|
|
|
Run example with defaults:
|
|
$ python custom_env.py
|
|
For CLI options:
|
|
$ python custom_env.py --help
|
|
"""
|
|
import argparse
|
|
import gym
|
|
from gym.spaces import Discrete, Box
|
|
import numpy as np
|
|
import os
|
|
import random
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents import ppo
|
|
from ray.rllib.env.env_context import EnvContext
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray.tune.logger import pretty_print
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, nn = try_import_torch()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
|
|
)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=50, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=0.1, help="Reward at which we stop training."
|
|
)
|
|
parser.add_argument(
|
|
"--no-tune",
|
|
action="store_true",
|
|
help="Run without Tune using a manual train loop instead. In this case,"
|
|
"use PPO without grid search and no TensorBoard.",
|
|
)
|
|
parser.add_argument(
|
|
"--local-mode",
|
|
action="store_true",
|
|
help="Init Ray in local mode for easier debugging.",
|
|
)
|
|
|
|
|
|
class SimpleCorridor(gym.Env):
|
|
"""Example of a custom env in which you have to walk down a corridor.
|
|
|
|
You can configure the length of the corridor via the env config."""
|
|
|
|
def __init__(self, config: EnvContext):
|
|
self.end_pos = config["corridor_length"]
|
|
self.cur_pos = 0
|
|
self.action_space = Discrete(2)
|
|
self.observation_space = Box(0.0, self.end_pos, shape=(1,), dtype=np.float32)
|
|
# Set the seed. This is only used for the final (reach goal) reward.
|
|
self.seed(config.worker_index * config.num_workers)
|
|
|
|
def reset(self):
|
|
self.cur_pos = 0
|
|
return [self.cur_pos]
|
|
|
|
def step(self, action):
|
|
assert action in [0, 1], action
|
|
if action == 0 and self.cur_pos > 0:
|
|
self.cur_pos -= 1
|
|
elif action == 1:
|
|
self.cur_pos += 1
|
|
done = self.cur_pos >= self.end_pos
|
|
# Produce a random reward when we reach the goal.
|
|
return [self.cur_pos], random.random() * 2 if done else -0.1, done, {}
|
|
|
|
def seed(self, seed=None):
|
|
random.seed(seed)
|
|
|
|
|
|
class CustomModel(TFModelV2):
|
|
"""Example of a keras custom model that just delegates to an fc-net."""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config, name):
|
|
super(CustomModel, self).__init__(
|
|
obs_space, action_space, num_outputs, model_config, name
|
|
)
|
|
self.model = FullyConnectedNetwork(
|
|
obs_space, action_space, num_outputs, model_config, name
|
|
)
|
|
|
|
def forward(self, input_dict, state, seq_lens):
|
|
return self.model.forward(input_dict, state, seq_lens)
|
|
|
|
def value_function(self):
|
|
return self.model.value_function()
|
|
|
|
|
|
class TorchCustomModel(TorchModelV2, nn.Module):
|
|
"""Example of a PyTorch custom model that just delegates to a fc-net."""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config, name):
|
|
TorchModelV2.__init__(
|
|
self, obs_space, action_space, num_outputs, model_config, name
|
|
)
|
|
nn.Module.__init__(self)
|
|
|
|
self.torch_sub_model = TorchFC(
|
|
obs_space, action_space, num_outputs, model_config, name
|
|
)
|
|
|
|
def forward(self, input_dict, state, seq_lens):
|
|
input_dict["obs"] = input_dict["obs"].float()
|
|
fc_out, _ = self.torch_sub_model(input_dict, state, seq_lens)
|
|
return fc_out, []
|
|
|
|
def value_function(self):
|
|
return torch.reshape(self.torch_sub_model.value_function(), [-1])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
print(f"Running with following CLI options: {args}")
|
|
|
|
ray.init(local_mode=args.local_mode)
|
|
|
|
# Can also register the env creator function explicitly with:
|
|
# register_env("corridor", lambda config: SimpleCorridor(config))
|
|
ModelCatalog.register_custom_model(
|
|
"my_model", TorchCustomModel if args.framework == "torch" else CustomModel
|
|
)
|
|
|
|
config = {
|
|
"env": SimpleCorridor, # or "corridor" if registered above
|
|
"env_config": {
|
|
"corridor_length": 5,
|
|
},
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"model": {
|
|
"custom_model": "my_model",
|
|
"vf_share_layers": True,
|
|
},
|
|
"num_workers": 1, # parallelism
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
if args.no_tune:
|
|
# manual training with train loop using PPO and fixed learning rate
|
|
if args.run != "PPO":
|
|
raise ValueError("Only support --run PPO with --no-tune.")
|
|
print("Running manual train loop without Ray Tune.")
|
|
ppo_config = ppo.DEFAULT_CONFIG.copy()
|
|
ppo_config.update(config)
|
|
# use fixed learning rate instead of grid search (needs tune)
|
|
ppo_config["lr"] = 1e-3
|
|
trainer = ppo.PPOTrainer(config=ppo_config, env=SimpleCorridor)
|
|
# run manual training loop and print results after each iteration
|
|
for _ in range(args.stop_iters):
|
|
result = trainer.train()
|
|
print(pretty_print(result))
|
|
# stop training of the target train steps or reward are reached
|
|
if (
|
|
result["timesteps_total"] >= args.stop_timesteps
|
|
or result["episode_reward_mean"] >= args.stop_reward
|
|
):
|
|
break
|
|
else:
|
|
# automated run with Tune and grid search and TensorBoard
|
|
print("Training automatically with Ray Tune")
|
|
results = tune.run(args.run, config=config, stop=stop)
|
|
|
|
if args.as_test:
|
|
print("Checking if learning goals were achieved")
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|