mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
293 lines
10 KiB
Python
293 lines
10 KiB
Python
import numpy as np
|
|
from typing import Dict, List
|
|
import gym
|
|
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
from ray.rllib.models.torch.misc import (
|
|
normc_initializer,
|
|
same_padding,
|
|
SlimConv2d,
|
|
SlimFC,
|
|
)
|
|
from ray.rllib.models.utils import get_activation_fn, get_filter_config
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.typing import ModelConfigDict, TensorType
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
class VisionNetwork(TorchModelV2, nn.Module):
|
|
"""Generic vision network."""
|
|
|
|
def __init__(
|
|
self,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
num_outputs: int,
|
|
model_config: ModelConfigDict,
|
|
name: str,
|
|
):
|
|
|
|
if not model_config.get("conv_filters"):
|
|
model_config["conv_filters"] = get_filter_config(obs_space.shape)
|
|
|
|
TorchModelV2.__init__(
|
|
self, obs_space, action_space, num_outputs, model_config, name
|
|
)
|
|
nn.Module.__init__(self)
|
|
|
|
activation = self.model_config.get("conv_activation")
|
|
filters = self.model_config["conv_filters"]
|
|
assert len(filters) > 0, "Must provide at least 1 entry in `conv_filters`!"
|
|
|
|
# Post FC net config.
|
|
post_fcnet_hiddens = model_config.get("post_fcnet_hiddens", [])
|
|
post_fcnet_activation = get_activation_fn(
|
|
model_config.get("post_fcnet_activation"), framework="torch"
|
|
)
|
|
|
|
no_final_linear = self.model_config.get("no_final_linear")
|
|
vf_share_layers = self.model_config.get("vf_share_layers")
|
|
|
|
# Whether the last layer is the output of a Flattened (rather than
|
|
# a n x (1,1) Conv2D).
|
|
self.last_layer_is_flattened = False
|
|
self._logits = None
|
|
|
|
layers = []
|
|
(w, h, in_channels) = obs_space.shape
|
|
|
|
in_size = [w, h]
|
|
for out_channels, kernel, stride in filters[:-1]:
|
|
padding, out_size = same_padding(in_size, kernel, stride)
|
|
layers.append(
|
|
SlimConv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel,
|
|
stride,
|
|
padding,
|
|
activation_fn=activation,
|
|
)
|
|
)
|
|
in_channels = out_channels
|
|
in_size = out_size
|
|
|
|
out_channels, kernel, stride = filters[-1]
|
|
|
|
# No final linear: Last layer has activation function and exits with
|
|
# num_outputs nodes (this could be a 1x1 conv or a FC layer, depending
|
|
# on `post_fcnet_...` settings).
|
|
if no_final_linear and num_outputs:
|
|
out_channels = out_channels if post_fcnet_hiddens else num_outputs
|
|
layers.append(
|
|
SlimConv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel,
|
|
stride,
|
|
None, # padding=valid
|
|
activation_fn=activation,
|
|
)
|
|
)
|
|
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
layer_sizes = post_fcnet_hiddens[:-1] + (
|
|
[num_outputs] if post_fcnet_hiddens else []
|
|
)
|
|
for i, out_size in enumerate(layer_sizes):
|
|
layers.append(
|
|
SlimFC(
|
|
in_size=out_channels,
|
|
out_size=out_size,
|
|
activation_fn=post_fcnet_activation,
|
|
initializer=normc_initializer(1.0),
|
|
)
|
|
)
|
|
out_channels = out_size
|
|
|
|
# Finish network normally (w/o overriding last layer size with
|
|
# `num_outputs`), then add another linear one of size `num_outputs`.
|
|
else:
|
|
layers.append(
|
|
SlimConv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel,
|
|
stride,
|
|
None, # padding=valid
|
|
activation_fn=activation,
|
|
)
|
|
)
|
|
|
|
# num_outputs defined. Use that to create an exact
|
|
# `num_output`-sized (1,1)-Conv2D.
|
|
if num_outputs:
|
|
in_size = [
|
|
np.ceil((in_size[0] - kernel[0]) / stride),
|
|
np.ceil((in_size[1] - kernel[1]) / stride),
|
|
]
|
|
padding, _ = same_padding(in_size, [1, 1], [1, 1])
|
|
if post_fcnet_hiddens:
|
|
layers.append(nn.Flatten())
|
|
in_size = out_channels
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
for i, out_size in enumerate(post_fcnet_hiddens + [num_outputs]):
|
|
layers.append(
|
|
SlimFC(
|
|
in_size=in_size,
|
|
out_size=out_size,
|
|
activation_fn=post_fcnet_activation
|
|
if i < len(post_fcnet_hiddens) - 1
|
|
else None,
|
|
initializer=normc_initializer(1.0),
|
|
)
|
|
)
|
|
in_size = out_size
|
|
# Last layer is logits layer.
|
|
self._logits = layers.pop()
|
|
|
|
else:
|
|
self._logits = SlimConv2d(
|
|
out_channels,
|
|
num_outputs,
|
|
[1, 1],
|
|
1,
|
|
padding,
|
|
activation_fn=None,
|
|
)
|
|
|
|
# num_outputs not known -> Flatten, then set self.num_outputs
|
|
# to the resulting number of nodes.
|
|
else:
|
|
self.last_layer_is_flattened = True
|
|
layers.append(nn.Flatten())
|
|
|
|
self._convs = nn.Sequential(*layers)
|
|
|
|
# If our num_outputs still unknown, we need to do a test pass to
|
|
# figure out the output dimensions. This could be the case, if we have
|
|
# the Flatten layer at the end.
|
|
if self.num_outputs is None:
|
|
# Create a B=1 dummy sample and push it through out conv-net.
|
|
dummy_in = (
|
|
torch.from_numpy(self.obs_space.sample())
|
|
.permute(2, 0, 1)
|
|
.unsqueeze(0)
|
|
.float()
|
|
)
|
|
dummy_out = self._convs(dummy_in)
|
|
self.num_outputs = dummy_out.shape[1]
|
|
|
|
# Build the value layers
|
|
self._value_branch_separate = self._value_branch = None
|
|
if vf_share_layers:
|
|
self._value_branch = SlimFC(
|
|
out_channels, 1, initializer=normc_initializer(0.01), activation_fn=None
|
|
)
|
|
else:
|
|
vf_layers = []
|
|
(w, h, in_channels) = obs_space.shape
|
|
in_size = [w, h]
|
|
for out_channels, kernel, stride in filters[:-1]:
|
|
padding, out_size = same_padding(in_size, kernel, stride)
|
|
vf_layers.append(
|
|
SlimConv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel,
|
|
stride,
|
|
padding,
|
|
activation_fn=activation,
|
|
)
|
|
)
|
|
in_channels = out_channels
|
|
in_size = out_size
|
|
|
|
out_channels, kernel, stride = filters[-1]
|
|
vf_layers.append(
|
|
SlimConv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel,
|
|
stride,
|
|
None,
|
|
activation_fn=activation,
|
|
)
|
|
)
|
|
|
|
vf_layers.append(
|
|
SlimConv2d(
|
|
in_channels=out_channels,
|
|
out_channels=1,
|
|
kernel=1,
|
|
stride=1,
|
|
padding=None,
|
|
activation_fn=None,
|
|
)
|
|
)
|
|
self._value_branch_separate = nn.Sequential(*vf_layers)
|
|
|
|
# Holds the current "base" output (before logits layer).
|
|
self._features = None
|
|
|
|
@override(TorchModelV2)
|
|
def forward(
|
|
self,
|
|
input_dict: Dict[str, TensorType],
|
|
state: List[TensorType],
|
|
seq_lens: TensorType,
|
|
) -> (TensorType, List[TensorType]):
|
|
self._features = input_dict["obs"].float()
|
|
# Permuate b/c data comes in as [B, dim, dim, channels]:
|
|
self._features = self._features.permute(0, 3, 1, 2)
|
|
conv_out = self._convs(self._features)
|
|
# Store features to save forward pass when getting value_function out.
|
|
if not self._value_branch_separate:
|
|
self._features = conv_out
|
|
|
|
if not self.last_layer_is_flattened:
|
|
if self._logits:
|
|
conv_out = self._logits(conv_out)
|
|
if len(conv_out.shape) == 4:
|
|
if conv_out.shape[2] != 1 or conv_out.shape[3] != 1:
|
|
raise ValueError(
|
|
"Given `conv_filters` ({}) do not result in a [B, {} "
|
|
"(`num_outputs`), 1, 1] shape (but in {})! Please "
|
|
"adjust your Conv2D stack such that the last 2 dims "
|
|
"are both 1.".format(
|
|
self.model_config["conv_filters"],
|
|
self.num_outputs,
|
|
list(conv_out.shape),
|
|
)
|
|
)
|
|
logits = conv_out.squeeze(3)
|
|
logits = logits.squeeze(2)
|
|
else:
|
|
logits = conv_out
|
|
return logits, state
|
|
else:
|
|
return conv_out, state
|
|
|
|
@override(TorchModelV2)
|
|
def value_function(self) -> TensorType:
|
|
assert self._features is not None, "must call forward() first"
|
|
if self._value_branch_separate:
|
|
value = self._value_branch_separate(self._features)
|
|
value = value.squeeze(3)
|
|
value = value.squeeze(2)
|
|
return value.squeeze(1)
|
|
else:
|
|
if not self.last_layer_is_flattened:
|
|
features = self._features.squeeze(3)
|
|
features = features.squeeze(2)
|
|
else:
|
|
features = self._features
|
|
return self._value_branch(features).squeeze(1)
|
|
|
|
def _hidden_layers(self, obs: TensorType) -> TensorType:
|
|
res = self._convs(obs.permute(0, 3, 1, 2)) # switch to channel-major
|
|
res = res.squeeze(3)
|
|
res = res.squeeze(2)
|
|
return res
|