ray/rllib/models/tests/test_conv2d_default_stacks.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

52 lines
1.7 KiB
Python

import gym
import unittest
from ray.rllib.models.catalog import ModelCatalog, MODEL_DEFAULTS
from ray.rllib.models.tf.visionnet import VisionNetwork
from ray.rllib.models.torch.visionnet import VisionNetwork as TorchVision
from ray.rllib.utils.framework import try_import_torch, try_import_tf
from ray.rllib.utils.test_utils import framework_iterator
torch, nn = try_import_torch()
tf1, tf, tfv = try_import_tf()
class TestConv2DDefaultStacks(unittest.TestCase):
"""Tests our ConvTranspose2D Stack modules/layers."""
def test_conv2d_default_stacks(self):
"""Tests, whether conv2d defaults are available for img obs spaces."""
action_space = gym.spaces.Discrete(2)
shapes = [
(480, 640, 3),
(240, 320, 3),
(96, 96, 3),
(84, 84, 3),
(42, 42, 3),
(10, 10, 3),
]
for shape in shapes:
print(f"shape={shape}")
obs_space = gym.spaces.Box(-1.0, 1.0, shape=shape)
for fw in framework_iterator():
model = ModelCatalog.get_model_v2(
obs_space, action_space, 2, MODEL_DEFAULTS.copy(), framework=fw
)
self.assertTrue(isinstance(model, (VisionNetwork, TorchVision)))
if fw == "torch":
output, _ = model(
{"obs": torch.from_numpy(obs_space.sample()[None])}
)
else:
output, _ = model({"obs": obs_space.sample()[None]})
# B x [action logits]
self.assertTrue(output.shape == (1, 2))
print("ok")
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))