In Ray 2.0, we want to achieve api server HA.
Originally serve endpoints are in head node.
This pr moves serve endpoints to dashboard agents, so they will be HA due to multiple replica of dashboard agent.
Enable checking of the ray core module, excluding serve, workflows, and tune, in ./ci/lint/check_api_annotations.py. This required moving many files to ray._private and associated fixes.
The current inheritance behavior for runtime_envs enables the following workflow for Jobs: A working_dir can be set in the Jobs API, and then inside the driver script, if a new per-task runtime_env is defined, it will automatically inherit the driver's working_dir.
There is an ongoing discussion about the best approach for runtime_env inheritance going forward: https://github.com/ray-project/ray/issues/25484, in which we noted that there were no tests covering this behavior.
This PR adds integration tests for the above behavior. If we ultimately decide to abandon the current inheritance behavior and instead have child runtime envs completely overwrite the parent runtime env, this test will fail, reminding us to do the following:
- Update the internal runtime_env usage in Ray Tune to use the `ray.get_runtime_context().runtime_env.update` API
- Update the documentation for Ray Jobs telling users to use `ray.get_runtime_context().runtime_env.update` and update this test
This makes it possible to use an NFS file system that is shared on a cluster for runtime_env working directories.
Co-authored-by: shrekris-anyscale <92341594+shrekris-anyscale@users.noreply.github.com>
Co-authored-by: Eric Liang <ekhliang@gmail.com>
Packages are uploaded to the GCS for `runtime_env`. These packages are garbage collected when their refcount becomes zero.
The problem is the reference doesn't get incremented until the job starts, which happens after the package is uploaded. It's possible for the package's refcount to go to zero in between the upload and when the job starts, causing the package to be deleted before it's needed by the job. It's likely the cause of https://github.com/ray-project/ray/issues/23423.
We can't just increment the refcount at the time of upload, because if the script is killed before the job is started (e.g. via Ctrl-C) then the reference will never be decremented and the package will never be deleted.
The solution in this PR is to increment the refcount at the time of upload, but automatically decrement after a configurable timeout (default 30s). This should be enough time for the job to start. When the job starts, it increments the refcount as usual and decrements it when the job finishes or is killed.
Co-authored-by: Edward Oakes <ed.nmi.oakes@gmail.com>
Currently job drivers cannot use GPUs due to `CUDA_VISIBLE_DEVICES` being set (no resource request for job driver's supervisor actor). This is a regression from `ray submit`.
This is a temporary workaround -- in the future we should support a resource request for the job supervisor actor.
Some commands in the Serve CLI use Ray client and some commands ping the Ray dashboard; however, all commands read `RAY_ADDRESS` to get the address. This change raises a nice exception if the user accidentally passes a Ray client address as the Ray Dashboard address.
- Adds links to Job Submission from existing library tutorials where `ray submit` is used. When Jobs becomes GA, we should fully replace the uses of `ray submit` with Ray job submission and ensure this is tested.
- Adds docstrings for the Jobs SDK, which automatically show up in the API reference
- Improve the Job Submission main page
- Add a "Deployment Guide" landing page explaining when to use Ray Client vs Ray Jobs
Co-authored-by: Edward Oakes <ed.nmi.oakes@gmail.com>
The `py_modules` field of runtime_env supports uploading local Python modules for use on the Ray cluster. One gap in this is if the local Python module is in the form of a wheel (`.whl` file.) This PR adds the missing support for uploading and installing the `.whl` file.
Adds an API to the REST server, the SDK, and the CLI for listing all jobs that have been submitted, along with their information.
Co-authored-by: Edward Oakes <ed.nmi.oakes@gmail.com>
This change adds the GET, PUT, and DELETE commands for Serve’s REST API. The dashboard receives these commands and issues corresponding requests to the Serve controller.
The existing Job info in the cluster snapshot uses the old definition of Job, which is a single Ray driver (a single `ray.init()` connection).
In the new Job Submission protocol, a Job just specifies an entrypoint which can be any shell command. As such a Job can have zero or multiple Ray drivers. This means we should add a new snapshot entry corresponding to new jobs. We'll leave the old snapshot in place for legacy jobs.
- Also fixes `get_all_jobs` by using the appropriate KV namespace, and stripping the job key KV prefix from the job ID. It wasn't working before.
- This PR also unifies the datatype used by the GET jobs/ endpoint to be the same as the one used by the new jobs cluster snapshot. For backwards compatibility, the `status` and `message` fields are preserved.
For public SDK APIs, change the import path from
```python
from ray.dashboard.modules.job.common import JobStatus, JobStatusInfo
from ray.dashboard.modules.job.sdk import JobSubmissionClient
```
to
```python
from ray.job_submission import JobStatus, JobSubmissionClient
```
`JobStatus`, `JobStatusInfo` and `JobSubmissionClient` were the only names referenced in the SDK doc so far, but we can add more later as they appear.
As titled. We have a corner case on user laptop where user might left RAY_ADDRESS as http address but restarted local ray cluster. In this case we will try to do job submission with an http prefixed address.
Co-authored-by: Archit Kulkarni <architkulkarni@users.noreply.github.com>
Co-authored-by: Jiao Dong <jiaodong@anyscale.com>
Ray client currently supports connection strings for external modules of the format `"other_module://"`, however `ray job` commands don't support this format because trailing `/` is removed. Update so `ray job` commands also support this format.
This is the PR to write better runtime env exception. After 3 PRs are merged, we can entirely turn off the runtime env logs streamed to drivers.
The first PR only handles tasks exception.
TODO
- [x] Task (this PR)
- [ ] Actor
- [ ] Turn of runtime env logs & improve error msgs
This is the second part of https://docs.google.com/document/d/12qP3x5uaqZSKS-A_kK0ylPOp0E02_l-deAbmm8YtdFw/edit#. After this PR, dashboard agents will fully work with minimal ray installation.
Note that this PR requires to introduce "aioredis", "frozenlist", and "aiosignal" to the minimal installation. These dependencies are very small (or will be removed soon), and including them to minimal makes thing very easy. Please see the below for the reasoning.