Fix CQL getting stuck when deprecated timesteps_per_iteration is used (use min_train_timesteps_per_reporting instead).
CQL does not perform sampling timesteps and the deprecated timesteps_per_iteration is automatically translated into the new min_sample_timesteps_per_reporting, but should be translated (only for CQL and other purely offline RL algos) into min_train_timesteps_per_reporting.
If timesteps_per_iteration, CQL lever leaves the first iteration as it thinks it's not done yet (sample timesteps always remain at 0).
* Fix trainer timestep reporting for offline agents like CQL.
* wip.
* extend timesteps_total to 200K for learning_tests_pendulum_cql test
Co-authored-by: sven1977 <svenmika1977@gmail.com>
* Fix QMix, SAC, and MADDPA too.
* Unpin gym and deprecate pendulum v0
Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1
Lastly, all of the RLlib tests and have
been moved to python 3.7
* Add gym installation based on python version.
Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20
* Reformatting
* Fixing tests
* Move atari-py install conditional to req.txt
* migrate to new ale install method
* Fix QMix, SAC, and MADDPA too.
* Unpin gym and deprecate pendulum v0
Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1
Lastly, all of the RLlib tests and have
been moved to python 3.7
* Add gym installation based on python version.
Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20
Move atari-py install conditional to req.txt
migrate to new ale install method
Make parametric_actions_cartpole return float32 actions/obs
Adding type conversions if obs/actions don't match space
Add utils to make elements match gym space dtypes
Co-authored-by: Jun Gong <jungong@anyscale.com>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
* [RLlib] Unify the way we create and use LocalReplayBuffer for all the agents.
This change
1. Get rid of the try...except clause when we call execution_plan(),
and get rid of the Deprecation warning as a result.
2. Fix the execution_plan() call in Trainer._try_recover() too.
3. Most importantly, makes it much easier to create and use different types
of local replay buffers for all our agents.
E.g., allow us to easily create a reservoir sampling replay buffer for
APPO agent for Riot in the near future.
* Introduce explicit configuration for replay buffer types.
* Fix is_training key error.
* actually deprecate buffer_size field.
* formatting
* format util
* format release
* format rllib/agents
* format rllib/env
* format rllib/execution
* format rllib/evaluation
* format rllib/examples
* format rllib/policy
* format rllib utils and tests
* format streaming
* more formatting
* update requirements files
* fix rllib type checking
* updates
* update
* fix circular import
* Update python/ray/tests/test_runtime_env.py
* noqa