ray/rllib/env/vector_env.py

281 lines
10 KiB
Python
Raw Normal View History

import logging
import gym
import numpy as np
from typing import Callable, List, Optional, Tuple
from ray.rllib.env.base_env import BaseEnv
from ray.rllib.utils.annotations import Deprecated, override, PublicAPI
from ray.rllib.utils.typing import EnvActionType, EnvID, EnvInfoDict, \
EnvObsType, EnvType, MultiAgentDict, MultiEnvDict
logger = logging.getLogger(__name__)
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
@PublicAPI
class VectorEnv:
"""An environment that supports batch evaluation using clones of sub-envs.
"""
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
def __init__(self, observation_space: gym.Space, action_space: gym.Space,
num_envs: int):
"""Initializes a VectorEnv instance.
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
Args:
observation_space: The observation Space of a single
sub-env.
action_space: The action Space of a single sub-env.
num_envs: The number of clones to make of the given sub-env.
"""
self.observation_space = observation_space
self.action_space = action_space
self.num_envs = num_envs
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
@staticmethod
def vectorize_gym_envs(
make_env: Optional[Callable[[int], EnvType]] = None,
existing_envs: Optional[List[gym.Env]] = None,
num_envs: int = 1,
action_space: Optional[gym.Space] = None,
observation_space: Optional[gym.Space] = None,
# Deprecated. These seem to have never been used.
env_config=None,
policy_config=None) -> "_VectorizedGymEnv":
"""Translates any given gym.Env(s) into a VectorizedEnv object.
Args:
make_env: Factory that produces a new gym.Env taking the sub-env's
vector index as only arg. Must be defined if the
number of `existing_envs` is less than `num_envs`.
existing_envs: Optional list of already instantiated sub
environments.
num_envs: Total number of sub environments in this VectorEnv.
action_space: The action space. If None, use existing_envs[0]'s
action space.
observation_space: The observation space. If None, use
existing_envs[0]'s action space.
Returns:
The resulting _VectorizedGymEnv object (subclass of VectorEnv).
"""
return _VectorizedGymEnv(
make_env=make_env,
existing_envs=existing_envs or [],
num_envs=num_envs,
observation_space=observation_space,
action_space=action_space,
)
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
@PublicAPI
def vector_reset(self) -> List[EnvObsType]:
"""Resets all sub-environments.
Returns:
List of observations from each environment.
"""
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
raise NotImplementedError
@PublicAPI
def reset_at(self, index: Optional[int] = None) -> EnvObsType:
"""Resets a single environment.
Args:
index: An optional sub-env index to reset.
Returns:
Observations from the reset sub environment.
"""
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
raise NotImplementedError
@PublicAPI
def vector_step(
self, actions: List[EnvActionType]
) -> Tuple[List[EnvObsType], List[float], List[bool], List[EnvInfoDict]]:
"""Performs a vectorized step on all sub environments using `actions`.
2020-09-20 11:27:02 +02:00
Args:
actions: List of actions (one for each sub-env).
Returns:
A tuple consisting of
1) New observations for each sub-env.
2) Reward values for each sub-env.
3) Done values for each sub-env.
4) Info values for each sub-env.
"""
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
raise NotImplementedError
@PublicAPI
def get_sub_environments(self) -> List[EnvType]:
"""Returns the underlying sub environments.
Returns:
List of all underlying sub environments.
"""
return []
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
# TODO: (sven) Experimental method. Make @PublicAPI at some point.
def try_render_at(self, index: Optional[int] = None) -> \
Optional[np.ndarray]:
"""Renders a single environment.
Args:
index: An optional sub-env index to render.
Returns:
Either a numpy RGB image (shape=(w x h x 3) dtype=uint8) or
None in case rendering is handled directly by this method.
"""
pass
@Deprecated(new="vectorize_gym_envs", error=False)
def wrap(self, *args, **kwargs) -> "_VectorizedGymEnv":
return self.vectorize_gym_envs(*args, **kwargs)
@Deprecated(new="get_sub_environments", error=False)
def get_unwrapped(self) -> List[EnvType]:
return self.get_sub_environments()
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
class _VectorizedGymEnv(VectorEnv):
"""Internal wrapper to translate any gym.Envs into a VectorEnv object.
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
"""
def __init__(
self,
make_env: Optional[Callable[[int], EnvType]] = None,
existing_envs: Optional[List[gym.Env]] = None,
num_envs: int = 1,
*,
observation_space: Optional[gym.Space] = None,
action_space: Optional[gym.Space] = None,
# Deprecated. These seem to have never been used.
env_config=None,
policy_config=None,
):
"""Initializes a _VectorizedGymEnv object.
Args:
make_env: Factory that produces a new gym.Env taking the sub-env's
vector index as only arg. Must be defined if the
number of `existing_envs` is less than `num_envs`.
existing_envs: Optional list of already instantiated sub
environments.
num_envs: Total number of sub environments in this VectorEnv.
action_space: The action space. If None, use existing_envs[0]'s
action space.
observation_space: The observation space. If None, use
existing_envs[0]'s action space.
"""
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
self.envs = existing_envs
# Fill up missing envs (so we have exactly num_envs sub-envs in this
# VectorEnv.
while len(self.envs) < num_envs:
self.envs.append(make_env(len(self.envs)))
super().__init__(
observation_space=observation_space
or self.envs[0].observation_space,
action_space=action_space or self.envs[0].action_space,
num_envs=num_envs)
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
@override(VectorEnv)
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
def vector_reset(self):
return [e.reset() for e in self.envs]
@override(VectorEnv)
def reset_at(self, index: Optional[int] = None) -> EnvObsType:
if index is None:
index = 0
return self.envs[index].reset()
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
@override(VectorEnv)
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
def vector_step(self, actions):
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
for i in range(self.num_envs):
obs, r, done, info = self.envs[i].step(actions[i])
if not np.isscalar(r) or not np.isreal(r) or not np.isfinite(r):
raise ValueError(
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
"Reward should be finite scalar, got {} ({}). "
"Actions={}.".format(r, type(r), actions[i]))
if not isinstance(info, dict):
raise ValueError("Info should be a dict, got {} ({})".format(
info, type(info)))
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
obs_batch.append(obs)
rew_batch.append(r)
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170) ## What do these changes do? **Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part). ``` # CartPole-v0 on single core with 64x64 MLP: # vector_width=1: Actions per second 2720.1284458322966 # vector_width=8: Actions per second 13773.035334888269 # vector_width=64: Actions per second 37903.20472563333 ``` **Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface. **Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs). Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example: ``` gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv rllib.ServingEnv => rllib.AsyncVectorEnv ```
2018-06-18 11:55:32 -07:00
done_batch.append(done)
info_batch.append(info)
return obs_batch, rew_batch, done_batch, info_batch
@override(VectorEnv)
def get_sub_environments(self):
return self.envs
@override(VectorEnv)
def try_render_at(self, index: Optional[int] = None):
if index is None:
index = 0
return self.envs[index].render()
class VectorEnvWrapper(BaseEnv):
"""Internal adapter of VectorEnv to BaseEnv.
We assume the caller will always send the full vector of actions in each
call to send_actions(), and that they call reset_at() on all completed
environments before calling send_actions().
"""
def __init__(self, vector_env: VectorEnv):
self.vector_env = vector_env
self.action_space = vector_env.action_space
self.observation_space = vector_env.observation_space
self.num_envs = vector_env.num_envs
self.new_obs = None # lazily initialized
self.cur_rewards = [None for _ in range(self.num_envs)]
self.cur_dones = [False for _ in range(self.num_envs)]
self.cur_infos = [None for _ in range(self.num_envs)]
@override(BaseEnv)
def poll(self) -> Tuple[MultiEnvDict, MultiEnvDict, MultiEnvDict,
MultiEnvDict, MultiEnvDict]:
from ray.rllib.env.base_env import with_dummy_agent_id
if self.new_obs is None:
self.new_obs = self.vector_env.vector_reset()
new_obs = dict(enumerate(self.new_obs))
rewards = dict(enumerate(self.cur_rewards))
dones = dict(enumerate(self.cur_dones))
infos = dict(enumerate(self.cur_infos))
self.new_obs = []
self.cur_rewards = []
self.cur_dones = []
self.cur_infos = []
return with_dummy_agent_id(new_obs), \
with_dummy_agent_id(rewards), \
with_dummy_agent_id(dones, "__all__"), \
with_dummy_agent_id(infos), {}
@override(BaseEnv)
def send_actions(self, action_dict: MultiEnvDict) -> None:
from ray.rllib.env.base_env import _DUMMY_AGENT_ID
action_vector = [None] * self.num_envs
for i in range(self.num_envs):
action_vector[i] = action_dict[i][_DUMMY_AGENT_ID]
self.new_obs, self.cur_rewards, self.cur_dones, self.cur_infos = \
self.vector_env.vector_step(action_vector)
@override(BaseEnv)
def try_reset(self, env_id: Optional[EnvID] = None) -> MultiAgentDict:
from ray.rllib.env.base_env import _DUMMY_AGENT_ID
assert env_id is None or isinstance(env_id, int)
return {_DUMMY_AGENT_ID: self.vector_env.reset_at(env_id)}
@override(BaseEnv)
def get_sub_environments(self) -> List[EnvType]:
return self.vector_env.get_sub_environments()
@override(BaseEnv)
def try_render(self, env_id: Optional[EnvID] = None) -> None:
assert env_id is None or isinstance(env_id, int)
return self.vector_env.try_render_at(env_id)