[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
2019-02-13 19:08:26 +01:00
|
|
|
import logging
|
2019-02-18 01:28:19 -08:00
|
|
|
import numpy as np
|
2019-02-13 19:08:26 +01:00
|
|
|
|
2019-01-23 21:27:26 -08:00
|
|
|
from ray.rllib.utils.annotations import override, PublicAPI
|
2018-12-08 16:28:58 -08:00
|
|
|
|
2019-02-13 19:08:26 +01:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
|
2019-01-23 21:27:26 -08:00
|
|
|
@PublicAPI
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
class VectorEnv(object):
|
|
|
|
"""An environment that supports batch evaluation.
|
|
|
|
|
|
|
|
Subclasses must define the following attributes:
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
action_space (gym.Space): Action space of individual envs.
|
|
|
|
observation_space (gym.Space): Observation space of individual envs.
|
2018-07-01 00:05:08 -07:00
|
|
|
num_envs (int): Number of envs in this vector env.
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
"""
|
|
|
|
|
|
|
|
@staticmethod
|
2019-02-13 19:08:26 +01:00
|
|
|
def wrap(make_env=None,
|
|
|
|
existing_envs=None,
|
|
|
|
num_envs=1,
|
|
|
|
action_space=None,
|
|
|
|
observation_space=None):
|
|
|
|
return _VectorizedGymEnv(make_env, existing_envs or [], num_envs,
|
|
|
|
action_space, observation_space)
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
|
2019-01-23 21:27:26 -08:00
|
|
|
@PublicAPI
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def vector_reset(self):
|
2018-06-23 18:32:16 -07:00
|
|
|
"""Resets all environments.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
obs (list): Vector of observations from each environment.
|
|
|
|
"""
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
raise NotImplementedError
|
|
|
|
|
2019-01-23 21:27:26 -08:00
|
|
|
@PublicAPI
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def reset_at(self, index):
|
2018-06-23 18:32:16 -07:00
|
|
|
"""Resets a single environment.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
obs (obj): Observations from the resetted environment.
|
|
|
|
"""
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
raise NotImplementedError
|
|
|
|
|
2019-01-23 21:27:26 -08:00
|
|
|
@PublicAPI
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def vector_step(self, actions):
|
2018-06-23 18:32:16 -07:00
|
|
|
"""Vectorized step.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
actions (list): Actions for each env.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
obs (list): New observations for each env.
|
|
|
|
rewards (list): Reward values for each env.
|
|
|
|
dones (list): Done values for each env.
|
|
|
|
infos (list): Info values for each env.
|
|
|
|
"""
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
raise NotImplementedError
|
|
|
|
|
2019-01-23 21:27:26 -08:00
|
|
|
@PublicAPI
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def get_unwrapped(self):
|
2018-08-23 17:49:10 -07:00
|
|
|
"""Returns the underlying env instances."""
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
class _VectorizedGymEnv(VectorEnv):
|
|
|
|
"""Internal wrapper for gym envs to implement VectorEnv.
|
|
|
|
|
2018-06-23 18:32:16 -07:00
|
|
|
Arguments:
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
make_env (func|None): Factory that produces a new gym env. Must be
|
|
|
|
defined if the number of existing envs is less than num_envs.
|
|
|
|
existing_envs (list): List of existing gym envs.
|
|
|
|
num_envs (int): Desired num gym envs to keep total.
|
|
|
|
"""
|
|
|
|
|
2019-02-13 19:08:26 +01:00
|
|
|
def __init__(self,
|
|
|
|
make_env,
|
|
|
|
existing_envs,
|
|
|
|
num_envs,
|
|
|
|
action_space=None,
|
|
|
|
observation_space=None):
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
self.make_env = make_env
|
|
|
|
self.envs = existing_envs
|
|
|
|
self.num_envs = num_envs
|
|
|
|
while len(self.envs) < self.num_envs:
|
2018-08-01 16:29:27 -07:00
|
|
|
self.envs.append(self.make_env(len(self.envs)))
|
2019-02-13 19:08:26 +01:00
|
|
|
self.action_space = action_space or self.envs[0].action_space
|
|
|
|
self.observation_space = observation_space or \
|
|
|
|
self.envs[0].observation_space
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
|
2018-12-08 16:28:58 -08:00
|
|
|
@override(VectorEnv)
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def vector_reset(self):
|
|
|
|
return [e.reset() for e in self.envs]
|
|
|
|
|
2018-12-08 16:28:58 -08:00
|
|
|
@override(VectorEnv)
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def reset_at(self, index):
|
2018-08-01 16:29:27 -07:00
|
|
|
return self.envs[index].reset()
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
|
2018-12-08 16:28:58 -08:00
|
|
|
@override(VectorEnv)
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def vector_step(self, actions):
|
|
|
|
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
|
|
|
|
for i in range(self.num_envs):
|
2019-02-18 01:28:19 -08:00
|
|
|
obs, r, done, info = self.envs[i].step(actions[i])
|
|
|
|
if not np.isscalar(r) or not np.isreal(r) or not np.isfinite(r):
|
|
|
|
raise ValueError(
|
|
|
|
"Reward should be finite scalar, got {} ({})".format(
|
|
|
|
r, type(r)))
|
|
|
|
if type(info) is not dict:
|
|
|
|
raise ValueError("Info should be a dict, got {} ({})".format(
|
|
|
|
info, type(info)))
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
obs_batch.append(obs)
|
2019-02-18 01:28:19 -08:00
|
|
|
rew_batch.append(r)
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
done_batch.append(done)
|
|
|
|
info_batch.append(info)
|
|
|
|
return obs_batch, rew_batch, done_batch, info_batch
|
|
|
|
|
2018-12-08 16:28:58 -08:00
|
|
|
@override(VectorEnv)
|
[rllib] Envs for vectorized execution, async execution, and policy serving (#2170)
## What do these changes do?
**Vectorized envs**: Users can either implement `VectorEnv`, or alternatively set `num_envs=N` to auto-vectorize gym envs (this vectorizes just the action computation part).
```
# CartPole-v0 on single core with 64x64 MLP:
# vector_width=1:
Actions per second 2720.1284458322966
# vector_width=8:
Actions per second 13773.035334888269
# vector_width=64:
Actions per second 37903.20472563333
```
**Async envs**: The more general form of `VectorEnv` is `AsyncVectorEnv`, which allows agents to execute out of lockstep. We use this as an adapter to support `ServingEnv`. Since we can convert any other form of env to `AsyncVectorEnv`, utils.sampler has been rewritten to run against this interface.
**Policy serving**: This provides an env which is not stepped. Rather, the env executes in its own thread, querying the policy for actions via `self.get_action(obs)`, and reporting results via `self.log_returns(rewards)`. We also support logging of off-policy actions via `self.log_action(obs, action)`. This is a more convenient API for some use cases, and also provides parallelizable support for policy serving (for example, if you start a HTTP server in the env) and ingest of offline logs (if the env reads from serving logs).
Any of these types of envs can be passed to RLlib agents. RLlib handles conversions internally in CommonPolicyEvaluator, for example:
```
gym.Env => rllib.VectorEnv => rllib.AsyncVectorEnv
rllib.ServingEnv => rllib.AsyncVectorEnv
```
2018-06-18 11:55:32 -07:00
|
|
|
def get_unwrapped(self):
|
2018-08-23 17:49:10 -07:00
|
|
|
return self.envs
|