ray/rllib/models/torch/complex_input_net.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

229 lines
8.8 KiB
Python
Raw Normal View History

from gym.spaces import Box, Discrete, MultiDiscrete
import numpy as np
import tree # pip install dm_tree
# TODO (sven): add IMPALA-style option.
# from ray.rllib.examples.models.impala_vision_nets import TorchImpalaVisionNet
from ray.rllib.models.torch.misc import (
normc_initializer as torch_normc_initializer,
SlimFC,
)
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2, restore_original_dimensions
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.utils import get_filter_config
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.spaces.space_utils import flatten_space
from ray.rllib.utils.torch_utils import one_hot
torch, nn = try_import_torch()
class ComplexInputNetwork(TorchModelV2, nn.Module):
"""TorchModelV2 concat'ing CNN outputs to flat input(s), followed by FC(s).
Note: This model should be used for complex (Dict or Tuple) observation
spaces that have one or more image components.
The data flow is as follows:
`obs` (e.g. Tuple[img0, img1, discrete0]) -> `CNN0 + CNN1 + ONE-HOT`
`CNN0 + CNN1 + ONE-HOT` -> concat all flat outputs -> `out`
`out` -> (optional) FC-stack -> `out2`
`out2` -> action (logits) and vaulue heads.
"""
def __init__(self, obs_space, action_space, num_outputs, model_config, name):
self.original_space = (
obs_space.original_space
if hasattr(obs_space, "original_space")
else obs_space
)
self.processed_obs_space = (
self.original_space
if model_config.get("_disable_preprocessor_api")
else obs_space
)
nn.Module.__init__(self)
TorchModelV2.__init__(
self, self.original_space, action_space, num_outputs, model_config, name
)
self.flattened_input_space = flatten_space(self.original_space)
# Atari type CNNs or IMPALA type CNNs (with residual layers)?
# self.cnn_type = self.model_config["custom_model_config"].get(
# "conv_type", "atari")
# Build the CNN(s) given obs_space's image components.
self.cnns = {}
self.one_hot = {}
self.flatten_dims = {}
self.flatten = {}
concat_size = 0
for i, component in enumerate(self.flattened_input_space):
# Image space.
if len(component.shape) == 3:
config = {
"conv_filters": model_config["conv_filters"]
if "conv_filters" in model_config
else get_filter_config(obs_space.shape),
"conv_activation": model_config.get("conv_activation"),
"post_fcnet_hiddens": [],
}
# if self.cnn_type == "atari":
self.cnns[i] = ModelCatalog.get_model_v2(
component,
action_space,
num_outputs=None,
model_config=config,
framework="torch",
name="cnn_{}".format(i),
)
# TODO (sven): add IMPALA-style option.
# else:
# cnn = TorchImpalaVisionNet(
# component,
# action_space,
# num_outputs=None,
# model_config=config,
# name="cnn_{}".format(i))
concat_size += self.cnns[i].num_outputs
self.add_module("cnn_{}".format(i), self.cnns[i])
# Discrete|MultiDiscrete inputs -> One-hot encode.
elif isinstance(component, (Discrete, MultiDiscrete)):
if isinstance(component, Discrete):
size = component.n
else:
size = sum(component.nvec)
config = {
"fcnet_hiddens": model_config["fcnet_hiddens"],
"fcnet_activation": model_config.get("fcnet_activation"),
"post_fcnet_hiddens": [],
}
self.one_hot[i] = ModelCatalog.get_model_v2(
Box(-1.0, 1.0, (size,), np.float32),
action_space,
num_outputs=None,
model_config=config,
framework="torch",
name="one_hot_{}".format(i),
)
concat_size += self.one_hot[i].num_outputs
# Everything else (1D Box).
else:
size = int(np.product(component.shape))
config = {
"fcnet_hiddens": model_config["fcnet_hiddens"],
"fcnet_activation": model_config.get("fcnet_activation"),
"post_fcnet_hiddens": [],
}
self.flatten[i] = ModelCatalog.get_model_v2(
Box(-1.0, 1.0, (size,), np.float32),
action_space,
num_outputs=None,
model_config=config,
framework="torch",
name="flatten_{}".format(i),
)
self.flatten_dims[i] = size
concat_size += self.flatten[i].num_outputs
# Optional post-concat FC-stack.
post_fc_stack_config = {
"fcnet_hiddens": model_config.get("post_fcnet_hiddens", []),
"fcnet_activation": model_config.get("post_fcnet_activation", "relu"),
}
self.post_fc_stack = ModelCatalog.get_model_v2(
Box(float("-inf"), float("inf"), shape=(concat_size,), dtype=np.float32),
self.action_space,
None,
post_fc_stack_config,
framework="torch",
name="post_fc_stack",
)
# Actions and value heads.
self.logits_layer = None
self.value_layer = None
self._value_out = None
if num_outputs:
# Action-distribution head.
self.logits_layer = SlimFC(
in_size=self.post_fc_stack.num_outputs,
out_size=num_outputs,
activation_fn=None,
initializer=torch_normc_initializer(0.01),
)
# Create the value branch model.
self.value_layer = SlimFC(
in_size=self.post_fc_stack.num_outputs,
out_size=1,
activation_fn=None,
initializer=torch_normc_initializer(0.01),
)
else:
self.num_outputs = concat_size
@override(ModelV2)
def forward(self, input_dict, state, seq_lens):
if SampleBatch.OBS in input_dict and "obs_flat" in input_dict:
orig_obs = input_dict[SampleBatch.OBS]
else:
orig_obs = restore_original_dimensions(
input_dict[SampleBatch.OBS], self.processed_obs_space, tensorlib="torch"
)
# Push observations through the different components
# (CNNs, one-hot + FC, etc..).
outs = []
for i, component in enumerate(tree.flatten(orig_obs)):
if i in self.cnns:
cnn_out, _ = self.cnns[i](SampleBatch({SampleBatch.OBS: component}))
outs.append(cnn_out)
elif i in self.one_hot:
if component.dtype in [torch.int32, torch.int64, torch.uint8]:
one_hot_in = {
SampleBatch.OBS: one_hot(
component, self.flattened_input_space[i]
)
}
else:
one_hot_in = {SampleBatch.OBS: component}
one_hot_out, _ = self.one_hot[i](SampleBatch(one_hot_in))
outs.append(one_hot_out)
else:
nn_out, _ = self.flatten[i](
SampleBatch(
{
SampleBatch.OBS: torch.reshape(
component, [-1, self.flatten_dims[i]]
)
}
)
)
outs.append(nn_out)
# Concat all outputs and the non-image inputs.
out = torch.cat(outs, dim=1)
# Push through (optional) FC-stack (this may be an empty stack).
out, _ = self.post_fc_stack(SampleBatch({SampleBatch.OBS: out}))
# No logits/value branches.
if self.logits_layer is None:
return out, []
# Logits- and value branches.
logits, values = self.logits_layer(out), self.value_layer(out)
self._value_out = torch.reshape(values, [-1])
return logits, []
@override(ModelV2)
def value_function(self):
return self._value_out