ray/rllib/utils/exploration/tests/test_curiosity.py

287 lines
10 KiB
Python
Raw Normal View History

from collections import deque
import gym
import gym_minigrid
import numpy as np
import sys
import unittest
import ray
from ray import tune
from ray.rllib.agents.callbacks import DefaultCallbacks
import ray.rllib.agents.ppo as ppo
from ray.rllib.utils.test_utils import check_learning_achieved, framework_iterator
from ray.rllib.utils.numpy import one_hot
from ray.tune import register_env
class MyCallBack(DefaultCallbacks):
def __init__(self):
super().__init__()
self.deltas = []
def on_postprocess_trajectory(
self,
*,
worker,
episode,
agent_id,
policy_id,
policies,
postprocessed_batch,
original_batches,
**kwargs
):
pos = np.argmax(postprocessed_batch["obs"], -1)
x, y = pos % 8, pos // 8
self.deltas.extend((x ** 2 + y ** 2) ** 0.5)
def on_sample_end(self, *, worker, samples, **kwargs):
print("mean. distance from origin={}".format(np.mean(self.deltas)))
self.deltas = []
class OneHotWrapper(gym.core.ObservationWrapper):
def __init__(self, env, vector_index, framestack):
super().__init__(env)
self.framestack = framestack
# 49=7x7 field of vision; 11=object types; 6=colors; 3=state types.
# +4: Direction.
self.single_frame_dim = 49 * (11 + 6 + 3) + 4
self.init_x = None
self.init_y = None
self.x_positions = []
self.y_positions = []
self.x_y_delta_buffer = deque(maxlen=100)
self.vector_index = vector_index
self.frame_buffer = deque(maxlen=self.framestack)
for _ in range(self.framestack):
self.frame_buffer.append(np.zeros((self.single_frame_dim,)))
self.observation_space = gym.spaces.Box(
0.0, 1.0, shape=(self.single_frame_dim * self.framestack,), dtype=np.float32
)
def observation(self, obs):
# Debug output: max-x/y positions to watch exploration progress.
if self.step_count == 0:
for _ in range(self.framestack):
self.frame_buffer.append(np.zeros((self.single_frame_dim,)))
if self.vector_index == 0:
if self.x_positions:
max_diff = max(
np.sqrt(
(np.array(self.x_positions) - self.init_x) ** 2
+ (np.array(self.y_positions) - self.init_y) ** 2
)
)
self.x_y_delta_buffer.append(max_diff)
print(
"100-average dist travelled={}".format(
np.mean(self.x_y_delta_buffer)
)
)
self.x_positions = []
self.y_positions = []
self.init_x = self.agent_pos[0]
self.init_y = self.agent_pos[1]
# Are we carrying the key?
# if self.carrying is not None:
# print("Carrying KEY!!")
self.x_positions.append(self.agent_pos[0])
self.y_positions.append(self.agent_pos[1])
# One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten.
objects = one_hot(obs[:, :, 0], depth=11)
colors = one_hot(obs[:, :, 1], depth=6)
states = one_hot(obs[:, :, 2], depth=3)
# Is the door we see open?
# for x in range(7):
# for y in range(7):
# if objects[x, y, 4] == 1.0 and states[x, y, 0] == 1.0:
# print("Door OPEN!!")
all_ = np.concatenate([objects, colors, states], -1)
all_flat = np.reshape(all_, (-1,))
direction = one_hot(np.array(self.agent_dir), depth=4).astype(np.float32)
single_frame = np.concatenate([all_flat, direction])
self.frame_buffer.append(single_frame)
return np.concatenate(self.frame_buffer)
def env_maker(config):
name = config.get("name", "MiniGrid-Empty-5x5-v0")
framestack = config.get("framestack", 4)
env = gym.make(name)
# Only use image portion of observation (discard goal and direction).
env = gym_minigrid.wrappers.ImgObsWrapper(env)
env = OneHotWrapper(
env,
config.vector_index if hasattr(config, "vector_index") else 0,
framestack=framestack,
)
return env
register_env("mini-grid", env_maker)
CONV_FILTERS = [[16, [11, 11], 3], [32, [9, 9], 3], [64, [5, 5], 3]]
class TestCuriosity(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=3)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_curiosity_on_frozen_lake(self):
config = ppo.DEFAULT_CONFIG.copy()
# A very large frozen-lake that's hard for a random policy to solve
# due to 0.0 feedback.
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535) * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 08:24:00 -07:00
config["env"] = "FrozenLake-v1"
config["env_config"] = {
"desc": [
"SFFFFFFF",
"FFFFFFFF",
"FFFFFFFF",
"FFFFFFFF",
"FFFFFFFF",
"FFFFFFFF",
"FFFFFFFF",
"FFFFFFFG",
],
"is_slippery": False,
}
# Print out observations to see how far we already get inside the Env.
config["callbacks"] = MyCallBack
# Limit horizon to make it really hard for non-curious agent to reach
# the goal state.
config["horizon"] = 16
# Local only.
config["num_workers"] = 0
config["lr"] = 0.001
num_iterations = 10
for _ in framework_iterator(config, frameworks=("tf", "torch")):
# W/ Curiosity. Expect to learn something.
config["exploration_config"] = {
"type": "Curiosity",
"eta": 0.2,
"lr": 0.001,
"feature_dim": 128,
"feature_net_config": {
"fcnet_hiddens": [],
"fcnet_activation": "relu",
},
"sub_exploration": {
"type": "StochasticSampling",
},
}
trainer = ppo.PPOTrainer(config=config)
learnt = False
for i in range(num_iterations):
result = trainer.train()
print(result)
if result["episode_reward_max"] > 0.0:
print("Reached goal after {} iters!".format(i))
learnt = True
break
trainer.stop()
self.assertTrue(learnt)
# Disable this check for now. Add too much flakyness to test.
# if fw == "tf":
# # W/o Curiosity. Expect to learn nothing.
# print("Trying w/o curiosity (not expected to learn).")
# config["exploration_config"] = {
# "type": "StochasticSampling",
# }
# trainer = ppo.PPOTrainer(config=config)
# rewards_wo = 0.0
# for _ in range(num_iterations):
# result = trainer.train()
# rewards_wo += result["episode_reward_mean"]
# print(result)
# trainer.stop()
# self.assertTrue(rewards_wo == 0.0)
# print("Did not reach goal w/o curiosity!")
def test_curiosity_on_partially_observable_domain(self):
config = ppo.DEFAULT_CONFIG.copy()
config["env"] = "mini-grid"
config["env_config"] = {
# Also works with:
# - MiniGrid-MultiRoom-N4-S5-v0
# - MiniGrid-MultiRoom-N2-S4-v0
"name": "MiniGrid-Empty-8x8-v0",
"framestack": 1, # seems to work even w/o framestacking
}
config["horizon"] = 15 # Make it impossible to reach goal by chance.
config["num_envs_per_worker"] = 4
config["model"]["fcnet_hiddens"] = [256, 256]
config["model"]["fcnet_activation"] = "relu"
config["num_sgd_iter"] = 8
config["num_workers"] = 0
config["exploration_config"] = {
"type": "Curiosity",
# For the feature NN, use a non-LSTM fcnet (same as the one
# in the policy model).
"eta": 0.1,
"lr": 0.0003, # 0.0003 or 0.0005 seem to work fine as well.
"feature_dim": 64,
# No actual feature net: map directly from observations to feature
# vector (linearly).
"feature_net_config": {
"fcnet_hiddens": [],
"fcnet_activation": "relu",
},
"sub_exploration": {
"type": "StochasticSampling",
},
}
min_reward = 0.001
stop = {
"training_iteration": 25,
"episode_reward_mean": min_reward,
}
for _ in framework_iterator(config, frameworks="torch"):
# To replay:
# trainer = ppo.PPOTrainer(config=config)
# trainer.restore("[checkpoint file]")
# env = env_maker(config["env_config"])
# s = env.reset()
# for _ in range(10000):
# s, r, d, _ = env.step(trainer.compute_single_action(s))
# if d:
# s = env.reset()
# env.render()
results = tune.run("PPO", config=config, stop=stop, verbose=1)
check_learning_achieved(results, min_reward)
iters = results.trials[0].last_result["training_iteration"]
print("Reached in {} iterations.".format(iters))
# config_wo = config.copy()
# config_wo["exploration_config"] = {"type": "StochasticSampling"}
# stop_wo = stop.copy()
# stop_wo["training_iteration"] = iters
# results = tune.run(
# "PPO", config=config_wo, stop=stop_wo, verbose=1)
# try:
# check_learning_achieved(results, min_reward)
# except ValueError:
# print("Did not learn w/o curiosity (expected).")
# else:
# raise ValueError("Learnt w/o curiosity (not expected)!")
if __name__ == "__main__":
import pytest
sys.exit(pytest.main(["-v", __file__]))