ray/rllib/algorithms/cql/cql.py

220 lines
8.9 KiB
Python
Raw Normal View History

import logging
import numpy as np
from typing import Type
from ray.rllib.algorithms.cql.cql_tf_policy import CQLTFPolicy
from ray.rllib.algorithms.cql.cql_torch_policy import CQLTorchPolicy
from ray.rllib.agents.sac.sac import SACTrainer, DEFAULT_CONFIG as SAC_CONFIG
from ray.rllib.execution.train_ops import (
multi_gpu_train_one_step,
train_one_step,
)
from ray.rllib.offline.shuffled_input import ShuffledInput
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils import merge_dicts
from ray.rllib.utils.annotations import override
from ray.rllib.utils.deprecation import DEPRECATED_VALUE, deprecation_warning
from ray.rllib.utils.framework import try_import_tf, try_import_tfp
from ray.rllib.utils.metrics import (
LAST_TARGET_UPDATE_TS,
NUM_AGENT_STEPS_TRAINED,
NUM_ENV_STEPS_TRAINED,
NUM_TARGET_UPDATES,
TARGET_NET_UPDATE_TIMER,
SYNCH_WORKER_WEIGHTS_TIMER,
)
from ray.rllib.utils.replay_buffers.utils import update_priorities_in_replay_buffer
from ray.rllib.utils.typing import ResultDict, TrainerConfigDict
tf1, tf, tfv = try_import_tf()
tfp = try_import_tfp()
logger = logging.getLogger(__name__)
# fmt: off
# __sphinx_doc_begin__
CQL_DEFAULT_CONFIG = merge_dicts(
SAC_CONFIG, {
# You should override this to point to an offline dataset.
"input": "sampler",
# Switch off off-policy evaluation.
"input_evaluation": [],
# Number of iterations with Behavior Cloning Pretraining.
"bc_iters": 20000,
# CQL loss temperature.
"temperature": 1.0,
# Number of actions to sample for CQL loss.
"num_actions": 10,
# Whether to use the Lagrangian for Alpha Prime (in CQL loss).
"lagrangian": False,
# Lagrangian threshold.
"lagrangian_thresh": 5.0,
# Min Q weight multiplier.
"min_q_weight": 5.0,
"replay_buffer_config": {
"_enable_replay_buffer_api": True,
"type": "MultiAgentPrioritizedReplayBuffer",
# Replay buffer should be larger or equal the size of the offline
# dataset.
"capacity": int(1e6),
},
# Reporting: As CQL is offline (no sampling steps), we need to limit
# `self.train()` reporting by the number of steps trained (not sampled).
"min_sample_timesteps_per_reporting": 0,
"min_train_timesteps_per_reporting": 100,
# Deprecated keys.
# Use `replay_buffer_config.capacity` instead.
"buffer_size": DEPRECATED_VALUE,
# Use `min_sample_timesteps_per_reporting` and
# `min_train_timesteps_per_reporting` instead.
"timesteps_per_iteration": DEPRECATED_VALUE,
})
# __sphinx_doc_end__
# fmt: on
class CQLTrainer(SACTrainer):
"""CQL (derived from SAC)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Add the entire dataset to Replay Buffer (global variable)
reader = self.workers.local_worker().input_reader
# For d4rl, add the D4RLReaders' dataset to the buffer.
if isinstance(self.config["input"], str) and "d4rl" in self.config["input"]:
dataset = reader.dataset
self.local_replay_buffer.add(dataset)
# For a list of files, add each file's entire content to the buffer.
elif isinstance(reader, ShuffledInput):
num_batches = 0
total_timesteps = 0
for batch in reader.child.read_all_files():
num_batches += 1
total_timesteps += len(batch)
# Add NEXT_OBS if not available. This is slightly hacked
# as for the very last time step, we will use next-obs=zeros
# and therefore force-set DONE=True to avoid this missing
# next-obs to cause learning problems.
if SampleBatch.NEXT_OBS not in batch:
obs = batch[SampleBatch.OBS]
batch[SampleBatch.NEXT_OBS] = np.concatenate(
[obs[1:], np.zeros_like(obs[0:1])]
)
batch[SampleBatch.DONES][-1] = True
self.local_replay_buffer.add_batch(batch)
print(
f"Loaded {num_batches} batches ({total_timesteps} ts) into the"
" replay buffer, which has capacity "
f"{self.local_replay_buffer.capacity}."
)
else:
raise ValueError(
"Unknown offline input! config['input'] must either be list of"
" offline files (json) or a D4RL-specific InputReader "
"specifier (e.g. 'd4rl.hopper-medium-v0')."
)
@classmethod
@override(SACTrainer)
def get_default_config(cls) -> TrainerConfigDict:
return CQL_DEFAULT_CONFIG
@override(SACTrainer)
def validate_config(self, config: TrainerConfigDict) -> None:
# First check, whether old `timesteps_per_iteration` is used. If so
# convert right away as for CQL, we must measure in training timesteps,
# never sampling timesteps (CQL does not sample).
if config.get("timesteps_per_iteration", DEPRECATED_VALUE) != DEPRECATED_VALUE:
deprecation_warning(
old="timesteps_per_iteration",
new="min_train_timesteps_per_reporting",
error=False,
)
config["min_train_timesteps_per_reporting"] = config[
"timesteps_per_iteration"
]
config["timesteps_per_iteration"] = DEPRECATED_VALUE
# Call super's validation method.
super().validate_config(config)
if config["num_gpus"] > 1:
raise ValueError("`num_gpus` > 1 not yet supported for CQL!")
# CQL-torch performs the optimizer steps inside the loss function.
# Using the multi-GPU optimizer will therefore not work (see multi-GPU
# check above) and we must use the simple optimizer for now.
if config["simple_optimizer"] is not True and config["framework"] == "torch":
config["simple_optimizer"] = True
if config["framework"] in ["tf", "tf2", "tfe"] and tfp is None:
logger.warning(
"You need `tensorflow_probability` in order to run CQL! "
"Install it via `pip install tensorflow_probability`. Your "
f"tf.__version__={tf.__version__ if tf else None}."
"Trying to import tfp results in the following error:"
)
try_import_tfp(error=True)
@override(SACTrainer)
def get_default_policy_class(self, config: TrainerConfigDict) -> Type[Policy]:
if config["framework"] == "torch":
return CQLTorchPolicy
else:
return CQLTFPolicy
@override(SACTrainer)
def training_iteration(self) -> ResultDict:
# Sample training batch from replay buffer.
train_batch = self.local_replay_buffer.sample(self.config["train_batch_size"])
# Old-style replay buffers return None if learning has not started
if not train_batch:
return {}
# Postprocess batch before we learn on it.
post_fn = self.config.get("before_learn_on_batch") or (lambda b, *a: b)
train_batch = post_fn(train_batch, self.workers, self.config)
# Learn on training batch.
# Use simple optimizer (only for multi-agent or tf-eager; all other
# cases should use the multi-GPU optimizer, even if only using 1 GPU)
if self.config.get("simple_optimizer") is True:
train_results = train_one_step(self, train_batch)
else:
train_results = multi_gpu_train_one_step(self, train_batch)
# Update replay buffer priorities.
update_priorities_in_replay_buffer(
self.local_replay_buffer,
self.config,
train_batch,
train_results,
)
# Update target network every target_network_update_freq steps
cur_ts = self._counters[
NUM_AGENT_STEPS_TRAINED if self._by_agent_steps else NUM_ENV_STEPS_TRAINED
]
last_update = self._counters[LAST_TARGET_UPDATE_TS]
if cur_ts - last_update >= self.config["target_network_update_freq"]:
with self._timers[TARGET_NET_UPDATE_TIMER]:
to_update = self.workers.local_worker().get_policies_to_train()
self.workers.local_worker().foreach_policy_to_train(
lambda p, pid: pid in to_update and p.update_target()
)
self._counters[NUM_TARGET_UPDATES] += 1
self._counters[LAST_TARGET_UPDATE_TS] = cur_ts
# Update remote workers's weights after learning on local worker
if self.workers.remote_workers():
with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]:
self.workers.sync_weights()
# Return all collected metrics for the iteration.
return train_results