ray/doc/kubernetes/example_scripts/run_local_example.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

62 lines
1.6 KiB
Python
Raw Normal View History

from collections import Counter
import sys
import time
import ray
""" Run this script locally to execute a Ray program on your Ray cluster on
Kubernetes.
Before running this script, you must port-forward from the local host to
the relevant Kubernetes head service e.g.
kubectl -n ray port-forward service/example-cluster-ray-head 10001:10001.
Set the constant LOCAL_PORT below to the local port being forwarded.
"""
LOCAL_PORT = 10001
@ray.remote
def gethostname(x):
import platform
import time
time.sleep(0.01)
return x + (platform.node(),)
def wait_for_nodes(expected):
# Wait for all nodes to join the cluster.
while True:
resources = ray.cluster_resources()
node_keys = [key for key in resources if "node" in key]
num_nodes = sum(resources[node_key] for node_key in node_keys)
if num_nodes < expected:
print(
"{} nodes have joined so far, waiting for {} more.".format(
num_nodes, expected - num_nodes
)
)
sys.stdout.flush()
time.sleep(1)
else:
break
def main():
wait_for_nodes(3)
# Check that objects can be transferred from each node to each other node.
for i in range(10):
print("Iteration {}".format(i))
results = [gethostname.remote(gethostname.remote(())) for _ in range(100)]
print(Counter(ray.get(results)))
sys.stdout.flush()
print("Success!")
sys.stdout.flush()
if __name__ == "__main__":
ray.init(f"ray://127.0.0.1:{LOCAL_PORT}")
main()