ray/rllib/tests/test_supported_spaces.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

248 lines
8.3 KiB
Python
Raw Normal View History

from gym.spaces import Box, Dict, Discrete, Tuple, MultiDiscrete
import numpy as np
import unittest
import ray
from ray.rllib.algorithms.registry import get_algorithm_class
from ray.rllib.examples.env.random_env import RandomEnv
from ray.rllib.models.tf.complex_input_net import ComplexInputNetwork as ComplexNet
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork as FCNet
from ray.rllib.models.tf.visionnet import VisionNetwork as VisionNet
from ray.rllib.models.torch.complex_input_net import (
ComplexInputNetwork as TorchComplexNet,
)
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFCNet
from ray.rllib.models.torch.visionnet import VisionNetwork as TorchVisionNet
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.utils.test_utils import framework_iterator
ACTION_SPACES_TO_TEST = {
"discrete": Discrete(5),
"vector1d": Box(-1.0, 1.0, (5,), dtype=np.float32),
"vector2d": Box(-1.0, 1.0, (5,), dtype=np.float32),
"int_actions": Box(0, 3, (2, 3), dtype=np.int32),
"multidiscrete": MultiDiscrete([1, 2, 3, 4]),
"tuple": Tuple([Discrete(2), Discrete(3), Box(-1.0, 1.0, (5,), dtype=np.float32)]),
"dict": Dict(
{
"action_choice": Discrete(3),
"parameters": Box(-1.0, 1.0, (1,), dtype=np.float32),
"yet_another_nested_dict": Dict({"a": Tuple([Discrete(2), Discrete(3)])}),
}
),
}
OBSERVATION_SPACES_TO_TEST = {
"discrete": Discrete(5),
"vector1d": Box(-1.0, 1.0, (5,), dtype=np.float32),
"vector2d": Box(-1.0, 1.0, (5, 5), dtype=np.float32),
"image": Box(-1.0, 1.0, (84, 84, 1), dtype=np.float32),
"vizdoomgym": Box(-1.0, 1.0, (240, 320, 3), dtype=np.float32),
"tuple": Tuple([Discrete(10), Box(-1.0, 1.0, (5,), dtype=np.float32)]),
"dict": Dict(
{
"task": Discrete(10),
"position": Box(-1.0, 1.0, (5,), dtype=np.float32),
}
),
}
def check_support(alg, config, train=True, check_bounds=False, tfe=False):
config["log_level"] = "ERROR"
config["train_batch_size"] = 10
config["rollout_fragment_length"] = 10
def _do_check(alg, config, a_name, o_name):
fw = config["framework"]
action_space = ACTION_SPACES_TO_TEST[a_name]
obs_space = OBSERVATION_SPACES_TO_TEST[o_name]
print(
"=== Testing {} (fw={}) A={} S={} ===".format(
alg, fw, action_space, obs_space
)
)
config.update(
dict(
env_config=dict(
action_space=action_space,
observation_space=obs_space,
reward_space=Box(1.0, 1.0, shape=(), dtype=np.float32),
p_done=1.0,
check_action_bounds=check_bounds,
)
)
)
stat = "ok"
try:
a = get_algorithm_class(alg)(config=config, env=RandomEnv)
except ray.exceptions.RayActorError as e:
if len(e.args) >= 2 and isinstance(e.args[2], UnsupportedSpaceException):
stat = "unsupported"
elif isinstance(e.args[0].args[2], UnsupportedSpaceException):
stat = "unsupported"
else:
raise
except UnsupportedSpaceException:
stat = "unsupported"
else:
if alg not in ["DDPG", "ES", "ARS", "SAC"]:
# 2D (image) input: Expect VisionNet.
if o_name in ["atari", "image"]:
if fw == "torch":
assert isinstance(a.get_policy().model, TorchVisionNet)
else:
assert isinstance(a.get_policy().model, VisionNet)
# 1D input: Expect FCNet.
elif o_name == "vector1d":
if fw == "torch":
assert isinstance(a.get_policy().model, TorchFCNet)
else:
assert isinstance(a.get_policy().model, FCNet)
# Could be either one: ComplexNet (if disabled Preprocessor)
# or FCNet (w/ Preprocessor).
elif o_name == "vector2d":
if fw == "torch":
assert isinstance(
a.get_policy().model, (TorchComplexNet, TorchFCNet)
)
else:
assert isinstance(a.get_policy().model, (ComplexNet, FCNet))
if train:
a.train()
a.stop()
print(stat)
frameworks = ("tf", "torch")
if tfe:
frameworks += ("tf2", "tfe")
for _ in framework_iterator(config, frameworks=frameworks):
# Zip through action- and obs-spaces.
for a_name, o_name in zip(
ACTION_SPACES_TO_TEST.keys(), OBSERVATION_SPACES_TO_TEST.keys()
):
_do_check(alg, config, a_name, o_name)
# Do the remaining obs spaces.
assert len(OBSERVATION_SPACES_TO_TEST) >= len(ACTION_SPACES_TO_TEST)
fixed_action_key = next(iter(ACTION_SPACES_TO_TEST.keys()))
for i, o_name in enumerate(OBSERVATION_SPACES_TO_TEST.keys()):
if i < len(ACTION_SPACES_TO_TEST):
continue
_do_check(alg, config, fixed_action_key, o_name)
class TestSupportedSpacesPG(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_a3c(self):
config = {"num_workers": 1, "optimizer": {"grads_per_step": 1}}
check_support("A3C", config, check_bounds=True)
def test_appo(self):
check_support("APPO", {"num_gpus": 0, "vtrace": False}, train=False)
check_support("APPO", {"num_gpus": 0, "vtrace": True})
def test_impala(self):
check_support("IMPALA", {"num_gpus": 0})
def test_ppo(self):
config = {
"num_workers": 0,
"train_batch_size": 100,
"rollout_fragment_length": 10,
"num_sgd_iter": 1,
"sgd_minibatch_size": 10,
}
check_support("PPO", config, check_bounds=True, tfe=True)
def test_pg(self):
config = {"num_workers": 1, "optimizer": {}}
check_support("PG", config, train=False, check_bounds=True, tfe=True)
class TestSupportedSpacesOffPolicy(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_ddpg(self):
check_support(
"DDPG",
{
"exploration_config": {"ou_base_scale": 100.0},
"min_sample_timesteps_per_iteration": 1,
"replay_buffer_config": {
"capacity": 1000,
},
"use_state_preprocessor": True,
},
check_bounds=True,
)
def test_dqn(self):
config = {
"min_sample_timesteps_per_iteration": 1,
"replay_buffer_config": {
"capacity": 1000,
},
}
check_support("DQN", config, tfe=True)
def test_sac(self):
check_support(
"SAC", {"replay_buffer_config": {"capacity": 1000}}, check_bounds=True
)
class TestSupportedSpacesEvolutionAlgos(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_ars(self):
check_support(
"ARS",
{
"num_workers": 1,
"noise_size": 1500000,
"num_rollouts": 1,
"rollouts_used": 1,
},
)
def test_es(self):
check_support(
"ES",
{
"num_workers": 1,
"noise_size": 1500000,
"episodes_per_batch": 1,
"train_batch_size": 1,
},
)
if __name__ == "__main__":
import pytest
import sys
# One can specify the specific TestCase class to run.
# None for all unittest.TestCase classes in this file.
2020-07-11 22:06:35 +02:00
class_ = sys.argv[1] if len(sys.argv) > 1 else None
sys.exit(pytest.main(["-v", __file__ + ("" if class_ is None else "::" + class_)]))