ray/rllib/utils/tests/test_utils.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

571 lines
17 KiB
Python
Raw Normal View History

import gym
import numpy as np
import tree # pip install dm_tree
import unittest
import ray
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.numpy import flatten_inputs_to_1d_tensor as flatten_np
from ray.rllib.utils.numpy import make_action_immutable
from ray.rllib.utils.test_utils import check
from ray.rllib.utils.tf_utils import (
flatten_inputs_to_1d_tensor as flatten_tf,
one_hot as one_hot_tf,
)
from ray.rllib.utils.torch_utils import (
flatten_inputs_to_1d_tensor as flatten_torch,
one_hot as one_hot_torch,
)
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
class TestUtils(unittest.TestCase):
# Nested struct of data with B=3.
struct = {
"a": np.array([1, 3, 2]),
"b": (
np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]),
np.array(
[[[8.0], [7.0], [6.0]], [[5.0], [4.0], [3.0]], [[2.0], [1.0], [0.0]]]
),
),
"c": {
"ca": np.array([[1, 2], [3, 5], [0, 1]]),
"cb": np.array([1.0, 2.0, 3.0]),
},
}
# Nested struct of data with B=2 and T=1.
struct_w_time_axis = {
"a": np.array([[1], [3]]),
"b": (
np.array([[[1.0, 2.0, 3.0]], [[4.0, 5.0, 6.0]]]),
np.array([[[[8.0], [7.0], [6.0]]], [[[5.0], [4.0], [3.0]]]]),
),
"c": {"ca": np.array([[[1, 2]], [[3, 5]]]), "cb": np.array([[1.0], [2.0]])},
}
# Corresponding space struct.
spaces = dict(
{
"a": gym.spaces.Discrete(4),
"b": (gym.spaces.Box(-1.0, 10.0, (3,)), gym.spaces.Box(-1.0, 1.0, (3, 1))),
"c": dict(
{
"ca": gym.spaces.MultiDiscrete([4, 6]),
"cb": gym.spaces.Box(-1.0, 1.0, ()),
}
),
}
)
@classmethod
def setUpClass(cls) -> None:
tf1.enable_eager_execution()
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_make_action_immutable(self):
from types import MappingProxyType
# Test Box space.
space = gym.spaces.Box(low=-1.0, high=1.0, shape=(8,), dtype=np.float32)
action = space.sample()
action = make_action_immutable(action)
self.assertFalse(action.flags["WRITEABLE"])
# Test Discrete space.
# Nothing to be tested as sampled actions are integers
# and integers are immutable by nature.
# Test MultiDiscrete space.
space = gym.spaces.MultiDiscrete([3, 3, 3])
action = space.sample()
action = make_action_immutable(action)
self.assertFalse(action.flags["WRITEABLE"])
# Test MultiBinary space.
space = gym.spaces.MultiBinary([2, 2, 2])
action = space.sample()
action = make_action_immutable(action)
self.assertFalse(action.flags["WRITEABLE"])
# Test Tuple space.
space = gym.spaces.Tuple(
(
gym.spaces.Discrete(2),
gym.spaces.Box(low=-1.0, high=1.0, shape=(8,), dtype=np.float32),
)
)
action = space.sample()
action = tree.traverse(make_action_immutable, action, top_down=False)
self.assertFalse(action[1].flags["WRITEABLE"])
# Test Dict space.
space = gym.spaces.Dict(
{
"a": gym.spaces.Discrete(2),
"b": gym.spaces.Box(low=-1.0, high=1.0, shape=(8,), dtype=np.float32),
"c": gym.spaces.Tuple(
(
gym.spaces.Discrete(2),
gym.spaces.Box(
low=-1.0, high=1.0, shape=(8,), dtype=np.float32
),
)
),
}
)
action = space.sample()
action = tree.traverse(make_action_immutable, action, top_down=False)
def fail_fun(obj):
obj["a"] = 5
self.assertRaises(TypeError, fail_fun, action)
self.assertFalse(action["b"].flags["WRITEABLE"])
self.assertFalse(action["c"][1].flags["WRITEABLE"])
self.assertTrue(isinstance(action, MappingProxyType))
def test_flatten_inputs_to_1d_tensor(self):
# B=3; no time axis.
check(
flatten_np(self.struct, spaces_struct=self.spaces),
np.array(
[
[
0.0,
1.0,
0.0,
0.0,
1.0,
2.0,
3.0,
8.0,
7.0,
6.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
],
[
0.0,
0.0,
0.0,
1.0,
4.0,
5.0,
6.0,
5.0,
4.0,
3.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
1.0,
2.0,
],
[
0.0,
0.0,
1.0,
0.0,
7.0,
8.0,
9.0,
2.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
3.0,
],
]
),
)
struct_tf = tree.map_structure(lambda s: tf.convert_to_tensor(s), self.struct)
check(
flatten_tf(struct_tf, spaces_struct=self.spaces),
np.array(
[
[
0.0,
1.0,
0.0,
0.0,
1.0,
2.0,
3.0,
8.0,
7.0,
6.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
],
[
0.0,
0.0,
0.0,
1.0,
4.0,
5.0,
6.0,
5.0,
4.0,
3.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
1.0,
2.0,
],
[
0.0,
0.0,
1.0,
0.0,
7.0,
8.0,
9.0,
2.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
3.0,
],
]
),
)
struct_torch = tree.map_structure(lambda s: torch.from_numpy(s), self.struct)
check(
flatten_torch(struct_torch, spaces_struct=self.spaces),
np.array(
[
[
0.0,
1.0,
0.0,
0.0,
1.0,
2.0,
3.0,
8.0,
7.0,
6.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
],
[
0.0,
0.0,
0.0,
1.0,
4.0,
5.0,
6.0,
5.0,
4.0,
3.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
1.0,
2.0,
],
[
0.0,
0.0,
1.0,
0.0,
7.0,
8.0,
9.0,
2.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
3.0,
],
]
),
)
def test_flatten_inputs_to_1d_tensor_w_time_axis(self):
# B=2; T=1
check(
flatten_np(
self.struct_w_time_axis, spaces_struct=self.spaces, time_axis=True
),
np.array(
[
[
[
0.0,
1.0,
0.0,
0.0,
1.0,
2.0,
3.0,
8.0,
7.0,
6.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
]
],
[
[
0.0,
0.0,
0.0,
1.0,
4.0,
5.0,
6.0,
5.0,
4.0,
3.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
1.0,
2.0,
]
],
]
),
)
struct_tf = tree.map_structure(
lambda s: tf.convert_to_tensor(s), self.struct_w_time_axis
)
check(
flatten_tf(struct_tf, spaces_struct=self.spaces, time_axis=True),
np.array(
[
[
[
0.0,
1.0,
0.0,
0.0,
1.0,
2.0,
3.0,
8.0,
7.0,
6.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
]
],
[
[
0.0,
0.0,
0.0,
1.0,
4.0,
5.0,
6.0,
5.0,
4.0,
3.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
1.0,
2.0,
]
],
]
),
)
struct_torch = tree.map_structure(
lambda s: torch.from_numpy(s), self.struct_w_time_axis
)
check(
flatten_torch(struct_torch, spaces_struct=self.spaces, time_axis=True),
np.array(
[
[
[
0.0,
1.0,
0.0,
0.0,
1.0,
2.0,
3.0,
8.0,
7.0,
6.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
]
],
[
[
0.0,
0.0,
0.0,
1.0,
4.0,
5.0,
6.0,
5.0,
4.0,
3.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
1.0,
2.0,
]
],
]
),
)
def test_one_hot(self):
space = gym.spaces.MultiDiscrete([[3, 3], [3, 3]])
# TF
x = tf.Variable([[0, 2, 1, 0]], dtype=tf.int32)
y = one_hot_tf(x, space)
self.assertTrue(([1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0] == y.numpy()).all())
# Torch
x = torch.tensor([[0, 2, 1, 0]], dtype=torch.int32)
y = one_hot_torch(x, space)
self.assertTrue(([1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0] == y.numpy()).all())
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))