ray/release/long_running_tests/workloads/actor_deaths.py

126 lines
3.4 KiB
Python
Raw Normal View History

# This workload tests repeatedly killing actors and submitting tasks to them.
import json
import numpy as np
import os
import sys
import time
import ray
2019-12-05 18:29:41 -08:00
from ray.cluster_utils import Cluster
def update_progress(result):
result["last_update"] = time.time()
test_output_json = os.environ.get(
"TEST_OUTPUT_JSON", "/tmp/release_test_output.json"
)
with open(test_output_json, "wt") as f:
json.dump(result, f)
num_redis_shards = 1
redis_max_memory = 10 ** 8
object_store_memory = 10 ** 8
num_nodes = 2
message = (
"Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer."
)
assert (
num_nodes * object_store_memory + num_redis_shards * redis_max_memory
< ray._private.utils.get_system_memory() / 2
), message
# Simulate a cluster on one machine.
cluster = Cluster()
for i in range(num_nodes):
cluster.add_node(
redis_port=6379 if i == 0 else None,
num_redis_shards=num_redis_shards if i == 0 else None,
num_cpus=8,
num_gpus=0,
resources={str(i): 2},
object_store_memory=object_store_memory,
redis_max_memory=redis_max_memory,
dashboard_host="0.0.0.0",
)
ray.init(address=cluster.address)
# Run the workload.
num_parents = 5
num_children = 5
death_probability = 0.95
@ray.remote
class Child(object):
def __init__(self, death_probability):
self.death_probability = death_probability
def ping(self):
# Exit process with some probability.
exit_chance = np.random.rand()
if exit_chance > self.death_probability:
sys.exit(-1)
@ray.remote
class Parent(object):
def __init__(self, num_children, death_probability):
self.death_probability = death_probability
self.children = [Child.remote(death_probability) for _ in range(num_children)]
def ping(self, num_pings):
children_outputs = []
for _ in range(num_pings):
children_outputs += [child.ping.remote() for child in self.children]
try:
ray.get(children_outputs)
except Exception:
# Replace the children if one of them died.
self.__init__(len(self.children), self.death_probability)
def kill(self):
# Clean up children.
ray.get([child.__ray_terminate__.remote() for child in self.children])
parents = [Parent.remote(num_children, death_probability) for _ in range(num_parents)]
iteration = 0
start_time = time.time()
previous_time = start_time
while True:
ray.get([parent.ping.remote(10) for parent in parents])
# Kill a parent actor with some probability.
exit_chance = np.random.rand()
if exit_chance > death_probability:
parent_index = np.random.randint(len(parents))
parents[parent_index].kill.remote()
parents[parent_index] = Parent.remote(num_children, death_probability)
new_time = time.time()
print(
"Iteration {}:\n"
" - Iteration time: {}.\n"
" - Absolute time: {}.\n"
" - Total elapsed time: {}.".format(
iteration, new_time - previous_time, new_time, new_time - start_time
)
)
update_progress(
{
"iteration": iteration,
"iteration_time": new_time - previous_time,
"absolute_time": new_time,
"elapsed_time": new_time - start_time,
}
)
previous_time = new_time
iteration += 1