2022-05-13 01:29:59 -07:00
|
|
|
# flake8: noqa
|
2022-06-16 02:02:15 +02:00
|
|
|
# isort: skip_file
|
2022-05-13 01:29:59 -07:00
|
|
|
|
|
|
|
# __air_pytorch_preprocess_start__
|
|
|
|
|
|
|
|
from torchvision import datasets
|
|
|
|
from torchvision.transforms import ToTensor
|
|
|
|
|
|
|
|
# Download training data from open datasets.
|
|
|
|
training_data = datasets.FashionMNIST(
|
|
|
|
root="~/data",
|
|
|
|
train=True,
|
|
|
|
download=True,
|
|
|
|
transform=ToTensor(),
|
|
|
|
)
|
|
|
|
|
|
|
|
# Download test data from open datasets.
|
|
|
|
test_data = datasets.FashionMNIST(
|
|
|
|
root="~/data",
|
|
|
|
train=False,
|
|
|
|
download=True,
|
|
|
|
transform=ToTensor(),
|
|
|
|
)
|
|
|
|
|
|
|
|
# __air_pytorch_preprocess_end__
|
|
|
|
|
|
|
|
# __air_pytorch_train_start__
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
import ray.train as train
|
2022-07-07 16:29:04 -07:00
|
|
|
from ray.air import session
|
2022-06-08 21:34:18 -07:00
|
|
|
from ray.train.torch import TorchTrainer
|
2022-07-18 18:46:58 -04:00
|
|
|
from ray.air.config import ScalingConfig
|
2022-05-13 01:29:59 -07:00
|
|
|
|
|
|
|
# Define model
|
|
|
|
class NeuralNetwork(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(NeuralNetwork, self).__init__()
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.linear_relu_stack = nn.Sequential(
|
|
|
|
nn.Linear(28 * 28, 512),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(512, 512),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(512, 10),
|
|
|
|
nn.ReLU(),
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.flatten(x)
|
|
|
|
logits = self.linear_relu_stack(x)
|
|
|
|
return logits
|
|
|
|
|
|
|
|
|
|
|
|
def train_epoch(dataloader, model, loss_fn, optimizer):
|
2022-07-07 16:29:04 -07:00
|
|
|
size = len(dataloader.dataset) // session.get_world_size()
|
2022-05-13 01:29:59 -07:00
|
|
|
model.train()
|
|
|
|
for batch, (X, y) in enumerate(dataloader):
|
|
|
|
# Compute prediction error
|
|
|
|
pred = model(X)
|
|
|
|
loss = loss_fn(pred, y)
|
|
|
|
|
|
|
|
# Backpropagation
|
|
|
|
optimizer.zero_grad()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
if batch % 100 == 0:
|
|
|
|
loss, current = loss.item(), batch * len(X)
|
|
|
|
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
|
|
|
|
|
|
|
|
|
|
|
def validate_epoch(dataloader, model, loss_fn):
|
2022-07-07 16:29:04 -07:00
|
|
|
size = len(dataloader.dataset) // session.get_world_size()
|
2022-05-13 01:29:59 -07:00
|
|
|
num_batches = len(dataloader)
|
|
|
|
model.eval()
|
|
|
|
test_loss, correct = 0, 0
|
|
|
|
with torch.no_grad():
|
|
|
|
for X, y in dataloader:
|
|
|
|
pred = model(X)
|
|
|
|
test_loss += loss_fn(pred, y).item()
|
|
|
|
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
|
|
|
test_loss /= num_batches
|
|
|
|
correct /= size
|
|
|
|
print(
|
|
|
|
f"Test Error: \n "
|
|
|
|
f"Accuracy: {(100 * correct):>0.1f}%, "
|
|
|
|
f"Avg loss: {test_loss:>8f} \n"
|
|
|
|
)
|
|
|
|
return test_loss
|
|
|
|
|
|
|
|
|
|
|
|
def train_func(config):
|
|
|
|
batch_size = config["batch_size"]
|
|
|
|
lr = config["lr"]
|
|
|
|
epochs = config["epochs"]
|
|
|
|
|
2022-07-07 16:29:04 -07:00
|
|
|
worker_batch_size = batch_size // session.get_world_size()
|
2022-05-13 01:29:59 -07:00
|
|
|
|
|
|
|
# Create data loaders.
|
|
|
|
train_dataloader = DataLoader(training_data, batch_size=worker_batch_size)
|
|
|
|
test_dataloader = DataLoader(test_data, batch_size=worker_batch_size)
|
|
|
|
|
|
|
|
train_dataloader = train.torch.prepare_data_loader(train_dataloader)
|
|
|
|
test_dataloader = train.torch.prepare_data_loader(test_dataloader)
|
|
|
|
|
|
|
|
# Create model.
|
|
|
|
model = NeuralNetwork()
|
|
|
|
model = train.torch.prepare_model(model)
|
|
|
|
|
|
|
|
loss_fn = nn.CrossEntropyLoss()
|
|
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
|
|
|
|
|
|
|
|
for _ in range(epochs):
|
|
|
|
train_epoch(train_dataloader, model, loss_fn, optimizer)
|
|
|
|
loss = validate_epoch(test_dataloader, model, loss_fn)
|
2022-07-07 16:29:04 -07:00
|
|
|
session.report(dict(loss=loss))
|
2022-05-13 01:29:59 -07:00
|
|
|
|
|
|
|
|
|
|
|
num_workers = 2
|
|
|
|
use_gpu = False
|
|
|
|
|
|
|
|
trainer = TorchTrainer(
|
|
|
|
train_loop_per_worker=train_func,
|
|
|
|
train_loop_config={"lr": 1e-3, "batch_size": 64, "epochs": 4},
|
2022-07-18 18:46:58 -04:00
|
|
|
scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
|
2022-05-13 01:29:59 -07:00
|
|
|
)
|
|
|
|
result = trainer.fit()
|
|
|
|
print(f"Last result: {result.metrics}")
|
|
|
|
# __air_pytorch_train_end__
|
|
|
|
|
|
|
|
|
|
|
|
# # __air_pytorch_batchpred_start__
|
|
|
|
# import random
|
2022-06-16 02:02:15 +02:00
|
|
|
# from ray.train.batch_predictor import BatchPredictor
|
|
|
|
# from ray.train.torch import TorchPredictor
|
2022-05-13 01:29:59 -07:00
|
|
|
|
|
|
|
# batch_predictor = BatchPredictor.from_checkpoint(result.checkpoint, TorchPredictor)
|
|
|
|
|
|
|
|
# items = [{"x": random.uniform(0, 1) for _ in range(10)}]
|
|
|
|
# prediction_dataset = ray.data.from_items(items)
|
|
|
|
|
|
|
|
# predictions = batch_predictor.predict(prediction_dataset, dtype=torch.float)
|
|
|
|
# # __air_pytorch_batchpred_end__
|