ray/doc/source/ray-air/doc_code/pytorch_starter.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

145 lines
3.9 KiB
Python
Raw Normal View History

# flake8: noqa
# isort: skip_file
# __air_pytorch_preprocess_start__
from torchvision import datasets
from torchvision.transforms import ToTensor
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="~/data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="~/data",
train=False,
download=True,
transform=ToTensor(),
)
# __air_pytorch_preprocess_end__
# __air_pytorch_train_start__
import torch
from torch import nn
from torch.utils.data import DataLoader
import ray.train as train
from ray.air import session
from ray.train.torch import TorchTrainer
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU(),
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
def train_epoch(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) // session.get_world_size()
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def validate_epoch(dataloader, model, loss_fn):
size = len(dataloader.dataset) // session.get_world_size()
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(
f"Test Error: \n "
f"Accuracy: {(100 * correct):>0.1f}%, "
f"Avg loss: {test_loss:>8f} \n"
)
return test_loss
def train_func(config):
batch_size = config["batch_size"]
lr = config["lr"]
epochs = config["epochs"]
worker_batch_size = batch_size // session.get_world_size()
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=worker_batch_size)
test_dataloader = DataLoader(test_data, batch_size=worker_batch_size)
train_dataloader = train.torch.prepare_data_loader(train_dataloader)
test_dataloader = train.torch.prepare_data_loader(test_dataloader)
# Create model.
model = NeuralNetwork()
model = train.torch.prepare_model(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
for _ in range(epochs):
train_epoch(train_dataloader, model, loss_fn, optimizer)
loss = validate_epoch(test_dataloader, model, loss_fn)
session.report(dict(loss=loss))
num_workers = 2
use_gpu = False
trainer = TorchTrainer(
train_loop_per_worker=train_func,
train_loop_config={"lr": 1e-3, "batch_size": 64, "epochs": 4},
scaling_config={"num_workers": num_workers, "use_gpu": use_gpu},
)
result = trainer.fit()
print(f"Last result: {result.metrics}")
# __air_pytorch_train_end__
# # __air_pytorch_batchpred_start__
# import random
# from ray.train.batch_predictor import BatchPredictor
# from ray.train.torch import TorchPredictor
# batch_predictor = BatchPredictor.from_checkpoint(result.checkpoint, TorchPredictor)
# items = [{"x": random.uniform(0, 1) for _ in range(10)}]
# prediction_dataset = ray.data.from_items(items)
# predictions = batch_predictor.predict(prediction_dataset, dtype=torch.float)
# # __air_pytorch_batchpred_end__