ray/rllib/agents/ddpg/tests/test_td3.py

108 lines
4.2 KiB
Python
Raw Normal View History

import numpy as np
import unittest
import ray
import ray.rllib.agents.ddpg.td3 as td3
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import (
check,
check_compute_single_action,
check_train_results,
framework_iterator,
)
tf1, tf, tfv = try_import_tf()
class TestTD3(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_td3_compilation(self):
"""Test whether a TD3Trainer can be built with both frameworks."""
config = td3.TD3_DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
# Test against all frameworks.
for _ in framework_iterator(config, with_eager_tracing=True):
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535) * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 08:24:00 -07:00
trainer = td3.TD3Trainer(config=config, env="Pendulum-v1")
num_iterations = 1
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
check_compute_single_action(trainer)
trainer.stop()
def test_td3_exploration_and_with_random_prerun(self):
"""Tests TD3's Exploration (w/ random actions for n timesteps)."""
config = td3.TD3_DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
obs = np.array([0.0, 0.1, -0.1])
# Test against all frameworks.
for _ in framework_iterator(config, with_eager_tracing=True):
lcl_config = config.copy()
# Default GaussianNoise setup.
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535) * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 08:24:00 -07:00
trainer = td3.TD3Trainer(config=lcl_config, env="Pendulum-v1")
# Setting explore=False should always return the same action.
a_ = trainer.compute_single_action(obs, explore=False)
self.assertEqual(trainer.get_policy().global_timestep, 1)
for i in range(50):
a = trainer.compute_single_action(obs, explore=False)
self.assertEqual(trainer.get_policy().global_timestep, i + 2)
check(a, a_)
# explore=None (default: explore) should return different actions.
actions = []
for i in range(50):
actions.append(trainer.compute_single_action(obs))
self.assertEqual(trainer.get_policy().global_timestep, i + 52)
check(np.std(actions), 0.0, false=True)
trainer.stop()
# Check randomness at beginning.
lcl_config["exploration_config"] = {
# Act randomly at beginning ...
"random_timesteps": 30,
# Then act very closely to deterministic actions thereafter.
"stddev": 0.001,
"initial_scale": 0.001,
"final_scale": 0.001,
}
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535) * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 08:24:00 -07:00
trainer = td3.TD3Trainer(config=lcl_config, env="Pendulum-v1")
# ts=0 (get a deterministic action as per explore=False).
deterministic_action = trainer.compute_single_action(obs, explore=False)
self.assertEqual(trainer.get_policy().global_timestep, 1)
# ts=1-29 (in random window).
random_a = []
for i in range(1, 30):
random_a.append(trainer.compute_single_action(obs, explore=True))
self.assertEqual(trainer.get_policy().global_timestep, i + 1)
check(random_a[-1], deterministic_action, false=True)
self.assertTrue(np.std(random_a) > 0.3)
# ts > 30 (a=deterministic_action + scale * N[0,1])
for i in range(50):
a = trainer.compute_single_action(obs, explore=True)
self.assertEqual(trainer.get_policy().global_timestep, i + 31)
check(a, deterministic_action, rtol=0.1)
# ts >> 30 (BUT: explore=False -> expect deterministic action).
for i in range(50):
a = trainer.compute_single_action(obs, explore=False)
self.assertEqual(trainer.get_policy().global_timestep, i + 81)
check(a, deterministic_action)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))