ray/rllib/examples/trajectory_view_api.py

89 lines
2.6 KiB
Python
Raw Normal View History

import argparse
import ray
from ray import tune
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
from ray.rllib.examples.models.trajectory_view_utilizing_models import \
FrameStackingCartPoleModel, TorchFrameStackingCartPoleModel
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument(
"--run",
type=str,
default="PPO",
help="The RLlib-registered algorithm to use.")
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.")
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.")
parser.add_argument(
"--stop-iters",
type=int,
default=50,
help="Number of iterations to train.")
parser.add_argument(
"--stop-timesteps",
type=int,
default=200000,
help="Number of timesteps to train.")
parser.add_argument(
"--stop-reward",
type=float,
default=150.0,
help="Reward at which we stop training.")
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=3)
ModelCatalog.register_custom_model(
"frame_stack_model", FrameStackingCartPoleModel
if args.framework != "torch" else TorchFrameStackingCartPoleModel)
tune.register_env("stateless_cartpole", lambda c: StatelessCartPole())
config = {
"env": "stateless_cartpole",
"model": {
"vf_share_layers": True,
"custom_model": "frame_stack_model",
"custom_model_config": {
"num_frames": 16,
},
# To compare against a simple LSTM:
# "use_lstm": True,
# "lstm_use_prev_action": True,
# "lstm_use_prev_reward": True,
# To compare against a simple attention net:
# "use_attention": True,
# "attention_use_n_prev_actions": 1,
# "attention_use_n_prev_rewards": 1,
},
"num_sgd_iter": 5,
"vf_loss_coeff": 0.0001,
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, config=config, stop=stop, verbose=2)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()