2021-01-08 10:56:09 +01:00
|
|
|
import argparse
|
|
|
|
|
|
|
|
import ray
|
|
|
|
from ray import tune
|
2021-02-02 18:42:18 +01:00
|
|
|
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
|
2021-01-08 10:56:09 +01:00
|
|
|
from ray.rllib.examples.models.trajectory_view_utilizing_models import \
|
|
|
|
FrameStackingCartPoleModel, TorchFrameStackingCartPoleModel
|
|
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--run", type=str, default="PPO")
|
|
|
|
parser.add_argument(
|
|
|
|
"--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf")
|
|
|
|
parser.add_argument("--as-test", action="store_true")
|
|
|
|
parser.add_argument("--stop-iters", type=int, default=50)
|
2021-02-02 18:42:18 +01:00
|
|
|
parser.add_argument("--stop-timesteps", type=int, default=200000)
|
2021-01-08 10:56:09 +01:00
|
|
|
parser.add_argument("--stop-reward", type=float, default=150.0)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=3)
|
|
|
|
|
|
|
|
ModelCatalog.register_custom_model(
|
|
|
|
"frame_stack_model", FrameStackingCartPoleModel
|
|
|
|
if args.framework != "torch" else TorchFrameStackingCartPoleModel)
|
2021-02-02 18:42:18 +01:00
|
|
|
tune.register_env("stateless_cartpole", lambda c: StatelessCartPole())
|
2021-01-08 10:56:09 +01:00
|
|
|
|
|
|
|
config = {
|
2021-02-02 18:42:18 +01:00
|
|
|
"env": "stateless_cartpole",
|
2021-01-08 10:56:09 +01:00
|
|
|
"model": {
|
2021-03-25 14:16:50 +01:00
|
|
|
"vf_share_layers": True,
|
2021-01-08 10:56:09 +01:00
|
|
|
"custom_model": "frame_stack_model",
|
|
|
|
"custom_model_config": {
|
2021-02-02 18:42:18 +01:00
|
|
|
"num_frames": 16,
|
2021-03-25 14:16:50 +01:00
|
|
|
},
|
|
|
|
|
|
|
|
# To compare against a simple LSTM:
|
|
|
|
# "use_lstm": True,
|
|
|
|
# "lstm_use_prev_action": True,
|
|
|
|
# "lstm_use_prev_reward": True,
|
|
|
|
|
|
|
|
# To compare against a simple attention net:
|
|
|
|
# "use_attention": True,
|
|
|
|
# "attention_use_n_prev_actions": 1,
|
|
|
|
# "attention_use_n_prev_rewards": 1,
|
2021-01-08 10:56:09 +01:00
|
|
|
},
|
2021-03-25 14:16:50 +01:00
|
|
|
"num_sgd_iter": 5,
|
|
|
|
"vf_loss_coeff": 0.0001,
|
2021-01-08 10:56:09 +01:00
|
|
|
"framework": args.framework,
|
|
|
|
}
|
|
|
|
|
|
|
|
stop = {
|
|
|
|
"training_iteration": args.stop_iters,
|
|
|
|
"timesteps_total": args.stop_timesteps,
|
|
|
|
"episode_reward_mean": args.stop_reward,
|
|
|
|
}
|
|
|
|
results = tune.run(args.run, config=config, stop=stop, verbose=2)
|
|
|
|
|
|
|
|
if args.as_test:
|
|
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|