ray/rllib/agents/sac/rnnsac.py

73 lines
2.9 KiB
Python
Raw Normal View History

from typing import Optional, Type
from ray.rllib.agents.sac import SACTrainer, \
DEFAULT_CONFIG as SAC_DEFAULT_CONFIG
from ray.rllib.agents.sac.rnnsac_torch_policy import RNNSACTorchPolicy
from ray.rllib.policy.policy import Policy
from ray.rllib.utils.typing import TrainerConfigDict
DEFAULT_CONFIG = SACTrainer.merge_trainer_configs(
SAC_DEFAULT_CONFIG,
{
# Batch mode (see common config)
"batch_mode": "complete_episodes",
# If True, assume a zero-initialized state input (no matter where in
# the episode the sequence is located).
# If False, store the initial states along with each SampleBatch, use
# it (as initial state when running through the network for training),
# and update that initial state during training (from the internal
# state outputs of the immediately preceding sequence).
"zero_init_states": True,
# If > 0, use the `burn_in` first steps of each replay-sampled sequence
# (starting either from all 0.0-values if `zero_init_state=True` or
# from the already stored values) to calculate an even more accurate
# initial states for the actual sequence (starting after this burn-in
# window). In the burn-in case, the actual length of the sequence
# used for loss calculation is `n - burn_in` time steps
# (n=LSTMs/attention nets max_seq_len).
"burn_in": 0,
# Set automatically: The number of contiguous environment steps to
# replay at once. Will be calculated via
# model->max_seq_len + burn_in.
# Do not set this to any valid value!
"replay_sequence_length": -1,
},
_allow_unknown_configs=True,
)
def validate_config(config: TrainerConfigDict) -> None:
if config["replay_sequence_length"] != -1:
raise ValueError(
"`replay_sequence_length` is calculated automatically to be "
"model->max_seq_len + burn_in!")
# Add the `burn_in` to the Model's max_seq_len.
# Set the replay sequence length to the max_seq_len of the model.
config["replay_sequence_length"] = \
config["burn_in"] + config["model"]["max_seq_len"]
def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]:
"""Policy class picker function. Class is chosen based on DL-framework.
Args:
config (TrainerConfigDict): The trainer's configuration dict.
Returns:
Optional[Type[Policy]]: The Policy class to use with PPOTrainer.
If None, use `default_policy` provided in build_trainer().
"""
if config["framework"] == "torch":
return RNNSACTorchPolicy
RNNSACTrainer = SACTrainer.with_updates(
name="RNNSACTrainer",
default_policy=RNNSACTorchPolicy,
get_policy_class=get_policy_class,
default_config=DEFAULT_CONFIG,
validate_config=validate_config,
)
RNNSACTrainer._allow_unknown_subkeys += ["policy_model", "Q_model"]