from typing import Optional, Type from ray.rllib.agents.sac import SACTrainer, \ DEFAULT_CONFIG as SAC_DEFAULT_CONFIG from ray.rllib.agents.sac.rnnsac_torch_policy import RNNSACTorchPolicy from ray.rllib.policy.policy import Policy from ray.rllib.utils.typing import TrainerConfigDict DEFAULT_CONFIG = SACTrainer.merge_trainer_configs( SAC_DEFAULT_CONFIG, { # Batch mode (see common config) "batch_mode": "complete_episodes", # If True, assume a zero-initialized state input (no matter where in # the episode the sequence is located). # If False, store the initial states along with each SampleBatch, use # it (as initial state when running through the network for training), # and update that initial state during training (from the internal # state outputs of the immediately preceding sequence). "zero_init_states": True, # If > 0, use the `burn_in` first steps of each replay-sampled sequence # (starting either from all 0.0-values if `zero_init_state=True` or # from the already stored values) to calculate an even more accurate # initial states for the actual sequence (starting after this burn-in # window). In the burn-in case, the actual length of the sequence # used for loss calculation is `n - burn_in` time steps # (n=LSTM’s/attention net’s max_seq_len). "burn_in": 0, # Set automatically: The number of contiguous environment steps to # replay at once. Will be calculated via # model->max_seq_len + burn_in. # Do not set this to any valid value! "replay_sequence_length": -1, }, _allow_unknown_configs=True, ) def validate_config(config: TrainerConfigDict) -> None: if config["replay_sequence_length"] != -1: raise ValueError( "`replay_sequence_length` is calculated automatically to be " "model->max_seq_len + burn_in!") # Add the `burn_in` to the Model's max_seq_len. # Set the replay sequence length to the max_seq_len of the model. config["replay_sequence_length"] = \ config["burn_in"] + config["model"]["max_seq_len"] def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]: """Policy class picker function. Class is chosen based on DL-framework. Args: config (TrainerConfigDict): The trainer's configuration dict. Returns: Optional[Type[Policy]]: The Policy class to use with PPOTrainer. If None, use `default_policy` provided in build_trainer(). """ if config["framework"] == "torch": return RNNSACTorchPolicy RNNSACTrainer = SACTrainer.with_updates( name="RNNSACTrainer", default_policy=RNNSACTorchPolicy, get_policy_class=get_policy_class, default_config=DEFAULT_CONFIG, validate_config=validate_config, ) RNNSACTrainer._allow_unknown_subkeys += ["policy_model", "Q_model"]