ray/rllib/env/wrappers/atari_wrappers.py

315 lines
10 KiB
Python
Raw Normal View History

from collections import deque
import gym
from gym import spaces
import numpy as np
from ray.rllib.utils.images import rgb2gray, resize
def is_atari(env):
if (
hasattr(env.observation_space, "shape")
and env.observation_space.shape is not None
and len(env.observation_space.shape) <= 2
):
return False
return hasattr(env, "unwrapped") and hasattr(env.unwrapped, "ale")
def get_wrapper_by_cls(env, cls):
"""Returns the gym env wrapper of the given class, or None."""
currentenv = env
while True:
if isinstance(currentenv, cls):
return currentenv
elif isinstance(currentenv, gym.Wrapper):
currentenv = currentenv.env
else:
return None
class MonitorEnv(gym.Wrapper):
def __init__(self, env=None):
"""Record episodes stats prior to EpisodicLifeEnv, etc."""
gym.Wrapper.__init__(self, env)
self._current_reward = None
self._num_steps = None
self._total_steps = None
self._episode_rewards = []
self._episode_lengths = []
self._num_episodes = 0
self._num_returned = 0
def reset(self, **kwargs):
obs = self.env.reset(**kwargs)
if self._total_steps is None:
self._total_steps = sum(self._episode_lengths)
if self._current_reward is not None:
self._episode_rewards.append(self._current_reward)
self._episode_lengths.append(self._num_steps)
self._num_episodes += 1
self._current_reward = 0
self._num_steps = 0
return obs
def step(self, action):
obs, rew, done, info = self.env.step(action)
self._current_reward += rew
self._num_steps += 1
self._total_steps += 1
return (obs, rew, done, info)
def get_episode_rewards(self):
return self._episode_rewards
def get_episode_lengths(self):
return self._episode_lengths
def get_total_steps(self):
return self._total_steps
def next_episode_results(self):
for i in range(self._num_returned, len(self._episode_rewards)):
yield (self._episode_rewards[i], self._episode_lengths[i])
self._num_returned = len(self._episode_rewards)
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max=30):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
"""
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == "NOOP"
def reset(self, **kwargs):
"""Do no-op action for a number of steps in [1, noop_max]."""
self.env.reset(**kwargs)
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
# This environment now uses the pcg64 random number generator which
# does not have randint as an attribute only has integers.
try:
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
# Also still support older versions.
except AttributeError:
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1)
assert noops > 0
obs = None
for _ in range(noops):
obs, _, done, _ = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class ClipRewardEnv(gym.RewardWrapper):
def __init__(self, env):
gym.RewardWrapper.__init__(self, env)
def reward(self, reward):
"""Bin reward to {+1, 0, -1} by its sign."""
return np.sign(reward)
class FireResetEnv(gym.Wrapper):
def __init__(self, env):
"""Take action on reset.
For environments that are fixed until firing."""
gym.Wrapper.__init__(self, env)
assert env.unwrapped.get_action_meanings()[1] == "FIRE"
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
"""
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert sometimes we stay in lives == 0 condtion for a few fr
# so its important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def reset(self, **kwargs):
"""Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
# no-op step to advance from terminal/lost life state
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class MaxAndSkipEnv(gym.Wrapper):
def __init__(self, env, skip=4):
"""Return only every `skip`-th frame"""
gym.Wrapper.__init__(self, env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = np.zeros((2,) + env.observation_space.shape, dtype=np.uint8)
self._skip = skip
def step(self, action):
"""Repeat action, sum reward, and max over last observations."""
total_reward = 0.0
done = None
for i in range(self._skip):
obs, reward, done, info = self.env.step(action)
if i == self._skip - 2:
self._obs_buffer[0] = obs
if i == self._skip - 1:
self._obs_buffer[1] = obs
total_reward += reward
if done:
break
# Note that the observation on the done=True frame
# doesn't matter
max_frame = self._obs_buffer.max(axis=0)
return max_frame, total_reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class WarpFrame(gym.ObservationWrapper):
def __init__(self, env, dim):
"""Warp frames to the specified size (dim x dim)."""
gym.ObservationWrapper.__init__(self, env)
self.width = dim
self.height = dim
self.observation_space = spaces.Box(
low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8
)
def observation(self, frame):
frame = rgb2gray(frame)
frame = resize(frame, height=self.height, width=self.width)
return frame[:, :, None]
# TODO: (sven) Deprecated class. Remove once traj. view is the norm.
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
"""Stack k last frames."""
gym.Wrapper.__init__(self, env)
self.k = k
self.frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(shp[0], shp[1], shp[2] * k),
dtype=env.observation_space.dtype,
)
def reset(self):
ob = self.env.reset()
for _ in range(self.k):
self.frames.append(ob)
return self._get_ob()
def step(self, action):
ob, reward, done, info = self.env.step(action)
self.frames.append(ob)
return self._get_ob(), reward, done, info
def _get_ob(self):
assert len(self.frames) == self.k
return np.concatenate(self.frames, axis=2)
class FrameStackTrajectoryView(gym.ObservationWrapper):
def __init__(self, env):
"""No stacking. Trajectory View API takes care of this."""
gym.Wrapper.__init__(self, env)
shp = env.observation_space.shape
assert shp[2] == 1
self.observation_space = spaces.Box(
low=0, high=255, shape=(shp[0], shp[1]), dtype=env.observation_space.dtype
)
def observation(self, observation):
return np.squeeze(observation, axis=-1)
class ScaledFloatFrame(gym.ObservationWrapper):
def __init__(self, env):
gym.ObservationWrapper.__init__(self, env)
self.observation_space = gym.spaces.Box(
low=0, high=1, shape=env.observation_space.shape, dtype=np.float32
)
def observation(self, observation):
# careful! This undoes the memory optimization, use
# with smaller replay buffers only.
return np.array(observation).astype(np.float32) / 255.0
def wrap_deepmind(env, dim=84, framestack=True):
"""Configure environment for DeepMind-style Atari.
Note that we assume reward clipping is done outside the wrapper.
Args:
env (EnvType): The env object to wrap.
dim (int): Dimension to resize observations to (dim x dim).
framestack (bool): Whether to framestack observations.
"""
env = MonitorEnv(env)
env = NoopResetEnv(env, noop_max=30)
if env.spec is not None and "NoFrameskip" in env.spec.id:
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = WarpFrame(env, dim)
# env = ScaledFloatFrame(env) # TODO: use for dqn?
# env = ClipRewardEnv(env) # reward clipping is handled by policy eval
# 4x image framestacking.
if framestack is True:
env = FrameStack(env, 4)
return env