ray/rllib/models/tf/complex_input_net.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

213 lines
8.1 KiB
Python
Raw Normal View History

from gym.spaces import Box, Discrete, MultiDiscrete
import numpy as np
import tree # pip install dm_tree
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2, restore_original_dimensions
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.utils import get_filter_config
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.spaces.space_utils import flatten_space
from ray.rllib.utils.tf_utils import one_hot
tf1, tf, tfv = try_import_tf()
# __sphinx_doc_begin__
class ComplexInputNetwork(TFModelV2):
"""TFModelV2 concat'ing CNN outputs to flat input(s), followed by FC(s).
Note: This model should be used for complex (Dict or Tuple) observation
spaces that have one or more image components.
The data flow is as follows:
`obs` (e.g. Tuple[img0, img1, discrete0]) -> `CNN0 + CNN1 + ONE-HOT`
`CNN0 + CNN1 + ONE-HOT` -> concat all flat outputs -> `out`
`out` -> (optional) FC-stack -> `out2`
`out2` -> action (logits) and vaulue heads.
"""
def __init__(self, obs_space, action_space, num_outputs, model_config, name):
self.original_space = (
obs_space.original_space
if hasattr(obs_space, "original_space")
else obs_space
)
self.processed_obs_space = (
self.original_space
if model_config.get("_disable_preprocessor_api")
else obs_space
)
super().__init__(
self.original_space, action_space, num_outputs, model_config, name
)
self.flattened_input_space = flatten_space(self.original_space)
# Build the CNN(s) given obs_space's image components.
self.cnns = {}
self.one_hot = {}
self.flatten_dims = {}
self.flatten = {}
concat_size = 0
for i, component in enumerate(self.flattened_input_space):
# Image space.
if len(component.shape) == 3:
config = {
"conv_filters": model_config["conv_filters"]
if "conv_filters" in model_config
else get_filter_config(component.shape),
"conv_activation": model_config.get("conv_activation"),
"post_fcnet_hiddens": [],
}
self.cnns[i] = ModelCatalog.get_model_v2(
component,
action_space,
num_outputs=None,
model_config=config,
framework="tf",
name="cnn_{}".format(i),
)
concat_size += self.cnns[i].num_outputs
# Discrete|MultiDiscrete inputs -> One-hot encode.
elif isinstance(component, (Discrete, MultiDiscrete)):
if isinstance(component, Discrete):
size = component.n
else:
size = np.sum(component.nvec)
config = {
"fcnet_hiddens": model_config["fcnet_hiddens"],
"fcnet_activation": model_config.get("fcnet_activation"),
"post_fcnet_hiddens": [],
}
self.one_hot[i] = ModelCatalog.get_model_v2(
Box(-1.0, 1.0, (size,), np.float32),
action_space,
num_outputs=None,
model_config=config,
framework="tf",
name="one_hot_{}".format(i),
)
concat_size += self.one_hot[i].num_outputs
# Everything else (1D Box).
else:
size = int(np.product(component.shape))
config = {
"fcnet_hiddens": model_config["fcnet_hiddens"],
"fcnet_activation": model_config.get("fcnet_activation"),
"post_fcnet_hiddens": [],
}
self.flatten[i] = ModelCatalog.get_model_v2(
Box(-1.0, 1.0, (size,), np.float32),
action_space,
num_outputs=None,
model_config=config,
framework="tf",
name="flatten_{}".format(i),
)
self.flatten_dims[i] = size
concat_size += self.flatten[i].num_outputs
# Optional post-concat FC-stack.
post_fc_stack_config = {
"fcnet_hiddens": model_config.get("post_fcnet_hiddens", []),
"fcnet_activation": model_config.get("post_fcnet_activation", "relu"),
}
self.post_fc_stack = ModelCatalog.get_model_v2(
Box(float("-inf"), float("inf"), shape=(concat_size,), dtype=np.float32),
self.action_space,
None,
post_fc_stack_config,
framework="tf",
name="post_fc_stack",
)
# Actions and value heads.
self.logits_and_value_model = None
self._value_out = None
if num_outputs:
# Action-distribution head.
concat_layer = tf.keras.layers.Input((self.post_fc_stack.num_outputs,))
logits_layer = tf.keras.layers.Dense(
num_outputs,
activation=None,
kernel_initializer=normc_initializer(0.01),
name="logits",
)(concat_layer)
# Create the value branch model.
value_layer = tf.keras.layers.Dense(
1,
activation=None,
kernel_initializer=normc_initializer(0.01),
name="value_out",
)(concat_layer)
self.logits_and_value_model = tf.keras.models.Model(
concat_layer, [logits_layer, value_layer]
)
else:
self.num_outputs = self.post_fc_stack.num_outputs
@override(ModelV2)
def forward(self, input_dict, state, seq_lens):
if SampleBatch.OBS in input_dict and "obs_flat" in input_dict:
orig_obs = input_dict[SampleBatch.OBS]
else:
orig_obs = restore_original_dimensions(
input_dict[SampleBatch.OBS], self.processed_obs_space, tensorlib="tf"
)
# Push image observations through our CNNs.
outs = []
for i, component in enumerate(tree.flatten(orig_obs)):
if i in self.cnns:
cnn_out, _ = self.cnns[i](SampleBatch({SampleBatch.OBS: component}))
outs.append(cnn_out)
elif i in self.one_hot:
if "int" in component.dtype.name:
one_hot_in = {
SampleBatch.OBS: one_hot(
component, self.flattened_input_space[i]
)
}
else:
one_hot_in = {SampleBatch.OBS: component}
one_hot_out, _ = self.one_hot[i](SampleBatch(one_hot_in))
outs.append(one_hot_out)
else:
nn_out, _ = self.flatten[i](
SampleBatch(
{
SampleBatch.OBS: tf.cast(
tf.reshape(component, [-1, self.flatten_dims[i]]),
tf.float32,
)
}
)
)
outs.append(nn_out)
# Concat all outputs and the non-image inputs.
out = tf.concat(outs, axis=1)
# Push through (optional) FC-stack (this may be an empty stack).
out, _ = self.post_fc_stack(SampleBatch({SampleBatch.OBS: out}))
# No logits/value branches.
if not self.logits_and_value_model:
return out, []
# Logits- and value branches.
logits, values = self.logits_and_value_model(out)
self._value_out = tf.reshape(values, [-1])
return logits, []
@override(ModelV2)
def value_function(self):
return self._value_out
# __sphinx_doc_end__