ray/rllib/utils/torch_utils.py

488 lines
16 KiB
Python
Raw Normal View History

import gym
from gym.spaces import Discrete, MultiDiscrete
import numpy as np
import os
import tree # pip install dm_tree
from typing import Dict, List, Optional, TYPE_CHECKING
import warnings
from ray.rllib.models.repeated_values import RepeatedValues
from ray.rllib.utils.deprecation import Deprecated
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.numpy import SMALL_NUMBER
from ray.rllib.utils.typing import LocalOptimizer, SpaceStruct, TensorType, \
TensorStructType
if TYPE_CHECKING:
from ray.rllib.policy.torch_policy import TorchPolicy
torch, nn = try_import_torch()
# Limit values suitable for use as close to a -inf logit. These are useful
# since -inf / inf cause NaNs during backprop.
FLOAT_MIN = -3.4e38
FLOAT_MAX = 3.4e38
def apply_grad_clipping(policy: "TorchPolicy", optimizer: LocalOptimizer,
loss: TensorType) -> Dict[str, TensorType]:
"""Applies gradient clipping to already computed grads inside `optimizer`.
Args:
policy: The TorchPolicy, which calculated `loss`.
optimizer: A local torch optimizer object.
loss: The torch loss tensor.
Returns:
An info dict containing the "grad_norm" key and the resulting clipped
gradients.
"""
info = {}
if policy.config["grad_clip"]:
for param_group in optimizer.param_groups:
# Make sure we only pass params with grad != None into torch
# clip_grad_norm_. Would fail otherwise.
params = list(
filter(lambda p: p.grad is not None, param_group["params"]))
if params:
grad_gnorm = nn.utils.clip_grad_norm_(
params, policy.config["grad_clip"])
if isinstance(grad_gnorm, torch.Tensor):
grad_gnorm = grad_gnorm.cpu().numpy()
info["grad_gnorm"] = grad_gnorm
return info
@Deprecated(
old="ray.rllib.utils.torch_utils.atanh",
new="torch.math.atanh",
error=False)
def atanh(x: TensorType) -> TensorType:
"""Atanh function for PyTorch."""
return 0.5 * torch.log(
(1 + x).clamp(min=SMALL_NUMBER) / (1 - x).clamp(min=SMALL_NUMBER))
def concat_multi_gpu_td_errors(policy: "TorchPolicy") -> Dict[str, TensorType]:
"""Concatenates multi-GPU (per-tower) TD error tensors given TorchPolicy.
TD-errors are extracted from the TorchPolicy via its tower_stats property.
Args:
policy: The TorchPolicy to extract the TD-error values from.
Returns:
A dict mapping strings "td_error" and "mean_td_error" to the
corresponding concatenated and mean-reduced values.
"""
td_error = torch.cat(
[
t.tower_stats.get("td_error", torch.tensor([0.0])).to(
policy.device) for t in policy.model_gpu_towers
],
dim=0)
policy.td_error = td_error
return {
"td_error": td_error,
"mean_td_error": torch.mean(td_error),
}
@Deprecated(new="ray/rllib/utils/numpy.py::convert_to_numpy", error=False)
def convert_to_non_torch_type(stats: TensorStructType) -> TensorStructType:
"""Converts values in `stats` to non-Tensor numpy or python types.
Args:
stats (any): Any (possibly nested) struct, the values in which will be
converted and returned as a new struct with all torch tensors
being converted to numpy types.
Returns:
Any: A new struct with the same structure as `stats`, but with all
values converted to non-torch Tensor types.
"""
# The mapping function used to numpyize torch Tensors.
def mapping(item):
if isinstance(item, torch.Tensor):
return item.cpu().item() if len(item.size()) == 0 else \
item.detach().cpu().numpy()
else:
return item
return tree.map_structure(mapping, stats)
def convert_to_torch_tensor(x: TensorStructType, device: Optional[str] = None):
"""Converts any struct to torch.Tensors.
x (any): Any (possibly nested) struct, the values in which will be
converted and returned as a new struct with all leaves converted
to torch tensors.
Returns:
Any: A new struct with the same structure as `stats`, but with all
values converted to torch Tensor types.
"""
def mapping(item):
# Already torch tensor -> make sure it's on right device.
if torch.is_tensor(item):
return item if device is None else item.to(device)
# Special handling of "Repeated" values.
elif isinstance(item, RepeatedValues):
return RepeatedValues(
tree.map_structure(mapping, item.values), item.lengths,
item.max_len)
# Numpy arrays.
if isinstance(item, np.ndarray):
# np.object_ type (e.g. info dicts in train batch): leave as-is.
if item.dtype == np.object_:
return item
# Non-writable numpy-arrays will cause PyTorch warning.
elif item.flags.writeable is False:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
tensor = torch.from_numpy(item)
# Already numpy: Wrap as torch tensor.
else:
tensor = torch.from_numpy(item)
# Everything else: Convert to numpy, then wrap as torch tensor.
else:
tensor = torch.from_numpy(np.asarray(item))
# Floatify all float64 tensors.
if tensor.dtype == torch.double:
tensor = tensor.float()
return tensor if device is None else tensor.to(device)
return tree.map_structure(mapping, x)
def explained_variance(y: TensorType, pred: TensorType) -> TensorType:
"""Computes the explained variance for a pair of labels and predictions.
The formula used is:
max(-1.0, 1.0 - (std(y - pred)^2 / std(y)^2))
Args:
y: The labels.
pred: The predictions.
Returns:
The explained variance given a pair of labels and predictions.
"""
y_var = torch.var(y, dim=[0])
diff_var = torch.var(y - pred, dim=[0])
min_ = torch.tensor([-1.0]).to(pred.device)
return torch.max(min_, 1 - (diff_var / y_var))[0]
def flatten_inputs_to_1d_tensor(inputs: TensorStructType,
spaces_struct: Optional[SpaceStruct] = None,
time_axis: bool = False) -> TensorType:
"""Flattens arbitrary input structs according to the given spaces struct.
Returns a single 1D tensor resulting from the different input
components' values.
Thereby:
- Boxes (any shape) get flattened to (B, [T]?, -1). Note that image boxes
are not treated differently from other types of Boxes and get
flattened as well.
- Discrete (int) values are one-hot'd, e.g. a batch of [1, 0, 3] (B=3 with
Discrete(4) space) results in [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]].
- MultiDiscrete values are multi-one-hot'd, e.g. a batch of
[[0, 2], [1, 4]] (B=2 with MultiDiscrete([2, 5]) space) results in
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 1]].
Args:
inputs: The inputs to be flattened.
spaces_struct: The structure of the spaces that behind the input
time_axis: Whether all inputs have a time-axis (after the batch axis).
If True, will keep not only the batch axis (0th), but the time axis
(1st) as-is and flatten everything from the 2nd axis up.
Returns:
A single 1D tensor resulting from concatenating all
flattened/one-hot'd input components. Depending on the time_axis flag,
the shape is (B, n) or (B, T, n).
Examples:
>>> # B=2
>>> out = flatten_inputs_to_1d_tensor(
... {"a": [1, 0], "b": [[[0.0], [0.1]], [1.0], [1.1]]},
... spaces_struct=dict(a=Discrete(2), b=Box(shape=(2, 1)))
... )
>>> print(out)
... [[0.0, 1.0, 0.0, 0.1], [1.0, 0.0, 1.0, 1.1]] # B=2 n=4
>>> # B=2; T=2
>>> out = flatten_inputs_to_1d_tensor(
... ([[1, 0], [0, 1]],
... [[[0.0, 0.1], [1.0, 1.1]], [[2.0, 2.1], [3.0, 3.1]]]),
... spaces_struct=tuple([Discrete(2), Box(shape=(2, ))]),
... time_axis=True
... )
>>> print(out)
... [[[0.0, 1.0, 0.0, 0.1], [1.0, 0.0, 1.0, 1.1]],
... [[1.0, 0.0, 2.0, 2.1], [0.0, 1.0, 3.0, 3.1]]] # B=2 T=2 n=4
"""
flat_inputs = tree.flatten(inputs)
flat_spaces = tree.flatten(spaces_struct) if spaces_struct is not None \
else [None] * len(flat_inputs)
B = None
T = None
out = []
for input_, space in zip(flat_inputs, flat_spaces):
# Store batch and (if applicable) time dimension.
if B is None:
B = input_.shape[0]
if time_axis:
T = input_.shape[1]
# One-hot encoding.
if isinstance(space, Discrete):
if time_axis:
input_ = torch.reshape(input_, [B * T])
out.append(one_hot(input_, space).float())
# Multi one-hot encoding.
elif isinstance(space, MultiDiscrete):
if time_axis:
input_ = torch.reshape(input_, [B * T, -1])
out.append(one_hot(input_, space).float())
# Box: Flatten.
else:
if time_axis:
input_ = torch.reshape(input_, [B * T, -1])
else:
input_ = torch.reshape(input_, [B, -1])
out.append(input_.float())
merged = torch.cat(out, dim=-1)
# Restore the time-dimension, if applicable.
if time_axis:
merged = torch.reshape(merged, [B, T, -1])
return merged
def global_norm(tensors: List[TensorType]) -> TensorType:
"""Returns the global L2 norm over a list of tensors.
output = sqrt(SUM(t ** 2 for t in tensors)),
where SUM reduces over all tensors and over all elements in tensors.
Args:
tensors: The list of tensors to calculate the global norm over.
Returns:
The global L2 norm over the given tensor list.
"""
# List of single tensors' L2 norms: SQRT(SUM(xi^2)) over all xi in tensor.
single_l2s = [
torch.pow(torch.sum(torch.pow(t, 2.0)), 0.5) for t in tensors
]
# Compute global norm from all single tensors' L2 norms.
return torch.pow(sum(torch.pow(l2, 2.0) for l2 in single_l2s), 0.5)
def huber_loss(x: TensorType, delta: float = 1.0) -> TensorType:
"""Computes the huber loss for a given term and delta parameter.
Reference: https://en.wikipedia.org/wiki/Huber_loss
Note that the factor of 0.5 is implicitly included in the calculation.
Formula:
L = 0.5 * x^2 for small abs x (delta threshold)
L = delta * (abs(x) - 0.5*delta) for larger abs x (delta threshold)
Args:
x: The input term, e.g. a TD error.
delta: The delta parmameter in the above formula.
Returns:
The Huber loss resulting from `x` and `delta`.
"""
return torch.where(
torch.abs(x) < delta,
torch.pow(x, 2.0) * 0.5, delta * (torch.abs(x) - 0.5 * delta))
def l2_loss(x: TensorType) -> TensorType:
"""Computes half the L2 norm over a tensor's values without the sqrt.
output = 0.5 * sum(x ** 2)
Args:
x: The input tensor.
Returns:
0.5 times the L2 norm over the given tensor's values (w/o sqrt).
"""
return 0.5 * torch.sum(torch.pow(x, 2.0))
def minimize_and_clip(optimizer: "torch.optim.Optimizer",
clip_val: float = 10.0) -> None:
"""Clips grads found in `optimizer.param_groups` to given value in place.
Ensures the norm of the gradients for each variable is clipped to
`clip_val`.
Args:
optimizer: The torch.optim.Optimizer to get the variables from.
clip_val: The global norm clip value. Will clip around -clip_val and
+clip_val.
"""
# Loop through optimizer's variables and norm per variable.
for param_group in optimizer.param_groups:
for p in param_group["params"]:
if p.grad is not None:
torch.nn.utils.clip_grad_norm_(p.grad, clip_val)
def one_hot(x: TensorType, space: gym.Space) -> TensorType:
"""Returns a one-hot tensor, given and int tensor and a space.
Handles the MultiDiscrete case as well.
Args:
x: The input tensor.
space: The space to use for generating the one-hot tensor.
Returns:
The resulting one-hot tensor.
Raises:
ValueError: If the given space is not a discrete one.
Examples:
>>> x = torch.IntTensor([0, 3]) # batch-dim=2
>>> # Discrete space with 4 (one-hot) slots per batch item.
>>> s = gym.spaces.Discrete(4)
>>> one_hot(x, s)
tensor([[1, 0, 0, 0], [0, 0, 0, 1]])
>>> x = torch.IntTensor([[0, 1, 2, 3]]) # batch-dim=1
>>> # MultiDiscrete space with 5 + 4 + 4 + 7 = 20 (one-hot) slots
>>> # per batch item.
>>> s = gym.spaces.MultiDiscrete([5, 4, 4, 7])
>>> one_hot(x, s)
tensor([[1, 0, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0]])
"""
if isinstance(space, Discrete):
return nn.functional.one_hot(x.long(), space.n)
elif isinstance(space, MultiDiscrete):
return torch.cat(
[
nn.functional.one_hot(x[:, i].long(), n)
for i, n in enumerate(space.nvec)
],
dim=-1)
else:
raise ValueError("Unsupported space for `one_hot`: {}".format(space))
def reduce_mean_ignore_inf(x: TensorType,
axis: Optional[int] = None) -> TensorType:
"""Same as torch.mean() but ignores -inf values.
Args:
x: The input tensor to reduce mean over.
axis: The axis over which to reduce. None for all axes.
Returns:
The mean reduced inputs, ignoring inf values.
"""
mask = torch.ne(x, float("-inf"))
x_zeroed = torch.where(mask, x, torch.zeros_like(x))
return torch.sum(x_zeroed, axis) / torch.sum(mask.float(), axis)
def sequence_mask(
lengths: TensorType,
maxlen: Optional[int] = None,
dtype=None,
time_major: bool = False,
) -> TensorType:
"""Offers same behavior as tf.sequence_mask for torch.
Thanks to Dimitris Papatheodorou
(https://discuss.pytorch.org/t/pytorch-equivalent-for-tf-sequence-mask/
39036).
Args:
lengths: The tensor of individual lengths to mask by.
maxlen: The maximum length to use for the time axis. If None, use
the max of `lengths`.
dtype: The torch dtype to use for the resulting mask.
time_major: Whether to return the mask as [B, T] (False; default) or
as [T, B] (True).
Returns:
The sequence mask resulting from the given input and parameters.
"""
# If maxlen not given, use the longest lengths in the `lengths` tensor.
if maxlen is None:
maxlen = int(lengths.max())
mask = ~(torch.ones(
(len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths)
# Time major transformation.
if not time_major:
mask = mask.t()
# By default, set the mask to be boolean.
mask.type(dtype or torch.bool)
return mask
def set_torch_seed(seed: Optional[int] = None) -> None:
"""Sets the torch random seed to the given value.
Args:
seed: The seed to use or None for no seeding.
"""
if seed is not None and torch:
torch.manual_seed(seed)
# See https://github.com/pytorch/pytorch/issues/47672.
cuda_version = torch.version.cuda
if cuda_version is not None and float(torch.version.cuda) >= 10.2:
os.environ["CUBLAS_WORKSPACE_CONFIG"] = "4096:8"
else:
# Not all Operations support this.
torch.use_deterministic_algorithms(True)
# This is only for Convolution no problem.
torch.backends.cudnn.deterministic = True
def softmax_cross_entropy_with_logits(
logits: TensorType,
labels: TensorType,
) -> TensorType:
"""Same behavior as tf.nn.softmax_cross_entropy_with_logits.
Args:
x: The input predictions.
labels: The labels corresponding to `x`.
Returns:
The resulting softmax cross-entropy given predictions and labels.
"""
return torch.sum(-labels * nn.functional.log_softmax(logits, -1), -1)
class Swish(nn.Module):
def __init__(self):
super().__init__()
self._beta = nn.Parameter(torch.tensor(1.0))
def forward(self, input_tensor):
return input_tensor * torch.sigmoid(self._beta * input_tensor)