mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
396 lines
13 KiB
Python
396 lines
13 KiB
Python
![]() |
import gym
|
||
|
from gym.spaces import Discrete, MultiDiscrete
|
||
|
import numpy as np
|
||
|
import os
|
||
|
import tree # pip install dm_tree
|
||
|
from typing import Dict, List, Optional, TYPE_CHECKING
|
||
|
import warnings
|
||
|
|
||
|
from ray.rllib.models.repeated_values import RepeatedValues
|
||
|
from ray.rllib.utils.deprecation import Deprecated
|
||
|
from ray.rllib.utils.framework import try_import_torch
|
||
|
from ray.rllib.utils.numpy import SMALL_NUMBER
|
||
|
from ray.rllib.utils.typing import LocalOptimizer, TensorType, TensorStructType
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ray.rllib.policy.torch_policy import TorchPolicy
|
||
|
|
||
|
torch, nn = try_import_torch()
|
||
|
|
||
|
# Limit values suitable for use as close to a -inf logit. These are useful
|
||
|
# since -inf / inf cause NaNs during backprop.
|
||
|
FLOAT_MIN = -3.4e38
|
||
|
FLOAT_MAX = 3.4e38
|
||
|
|
||
|
|
||
|
def apply_grad_clipping(policy: "TorchPolicy", optimizer: LocalOptimizer,
|
||
|
loss: TensorType) -> Dict[str, TensorType]:
|
||
|
"""Applies gradient clipping to already computed grads inside `optimizer`.
|
||
|
|
||
|
Args:
|
||
|
policy: The TorchPolicy, which calculated `loss`.
|
||
|
optimizer: A local torch optimizer object.
|
||
|
loss: The torch loss tensor.
|
||
|
|
||
|
Returns:
|
||
|
An info dict containing the "grad_norm" key and the resulting clipped
|
||
|
gradients.
|
||
|
"""
|
||
|
info = {}
|
||
|
if policy.config["grad_clip"]:
|
||
|
for param_group in optimizer.param_groups:
|
||
|
# Make sure we only pass params with grad != None into torch
|
||
|
# clip_grad_norm_. Would fail otherwise.
|
||
|
params = list(
|
||
|
filter(lambda p: p.grad is not None, param_group["params"]))
|
||
|
if params:
|
||
|
grad_gnorm = nn.utils.clip_grad_norm_(
|
||
|
params, policy.config["grad_clip"])
|
||
|
if isinstance(grad_gnorm, torch.Tensor):
|
||
|
grad_gnorm = grad_gnorm.cpu().numpy()
|
||
|
info["grad_gnorm"] = grad_gnorm
|
||
|
return info
|
||
|
|
||
|
|
||
|
@Deprecated(
|
||
|
old="ray.rllib.utils.torch_utils.atanh",
|
||
|
new="torch.math.atanh",
|
||
|
error=False)
|
||
|
def atanh(x: TensorType) -> TensorType:
|
||
|
"""Atanh function for PyTorch."""
|
||
|
return 0.5 * torch.log(
|
||
|
(1 + x).clamp(min=SMALL_NUMBER) / (1 - x).clamp(min=SMALL_NUMBER))
|
||
|
|
||
|
|
||
|
def concat_multi_gpu_td_errors(policy: "TorchPolicy") -> Dict[str, TensorType]:
|
||
|
"""Concatenates multi-GPU (per-tower) TD error tensors given TorchPolicy.
|
||
|
|
||
|
TD-errors are extracted from the TorchPolicy via its tower_stats property.
|
||
|
|
||
|
Args:
|
||
|
policy: The TorchPolicy to extract the TD-error values from.
|
||
|
|
||
|
Returns:
|
||
|
A dict mapping strings "td_error" and "mean_td_error" to the
|
||
|
corresponding concatenated and mean-reduced values.
|
||
|
"""
|
||
|
td_error = torch.cat(
|
||
|
[
|
||
|
t.tower_stats.get("td_error", torch.tensor([0.0])).to(
|
||
|
policy.device) for t in policy.model_gpu_towers
|
||
|
],
|
||
|
dim=0)
|
||
|
policy.td_error = td_error
|
||
|
return {
|
||
|
"td_error": td_error,
|
||
|
"mean_td_error": torch.mean(td_error),
|
||
|
}
|
||
|
|
||
|
|
||
|
@Deprecated(new="ray/rllib/utils/numpy.py::convert_to_numpy", error=False)
|
||
|
def convert_to_non_torch_type(stats: TensorStructType) -> TensorStructType:
|
||
|
"""Converts values in `stats` to non-Tensor numpy or python types.
|
||
|
|
||
|
Args:
|
||
|
stats (any): Any (possibly nested) struct, the values in which will be
|
||
|
converted and returned as a new struct with all torch tensors
|
||
|
being converted to numpy types.
|
||
|
|
||
|
Returns:
|
||
|
Any: A new struct with the same structure as `stats`, but with all
|
||
|
values converted to non-torch Tensor types.
|
||
|
"""
|
||
|
|
||
|
# The mapping function used to numpyize torch Tensors.
|
||
|
def mapping(item):
|
||
|
if isinstance(item, torch.Tensor):
|
||
|
return item.cpu().item() if len(item.size()) == 0 else \
|
||
|
item.detach().cpu().numpy()
|
||
|
else:
|
||
|
return item
|
||
|
|
||
|
return tree.map_structure(mapping, stats)
|
||
|
|
||
|
|
||
|
def convert_to_torch_tensor(x: TensorStructType, device: Optional[str] = None):
|
||
|
"""Converts any struct to torch.Tensors.
|
||
|
|
||
|
x (any): Any (possibly nested) struct, the values in which will be
|
||
|
converted and returned as a new struct with all leaves converted
|
||
|
to torch tensors.
|
||
|
|
||
|
Returns:
|
||
|
Any: A new struct with the same structure as `stats`, but with all
|
||
|
values converted to torch Tensor types.
|
||
|
"""
|
||
|
|
||
|
def mapping(item):
|
||
|
# Already torch tensor -> make sure it's on right device.
|
||
|
if torch.is_tensor(item):
|
||
|
return item if device is None else item.to(device)
|
||
|
# Special handling of "Repeated" values.
|
||
|
elif isinstance(item, RepeatedValues):
|
||
|
return RepeatedValues(
|
||
|
tree.map_structure(mapping, item.values), item.lengths,
|
||
|
item.max_len)
|
||
|
# Numpy arrays.
|
||
|
if isinstance(item, np.ndarray):
|
||
|
# np.object_ type (e.g. info dicts in train batch): leave as-is.
|
||
|
if item.dtype == np.object_:
|
||
|
return item
|
||
|
# Non-writable numpy-arrays will cause PyTorch warning.
|
||
|
elif item.flags.writeable is False:
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("ignore")
|
||
|
tensor = torch.from_numpy(item)
|
||
|
# Already numpy: Wrap as torch tensor.
|
||
|
else:
|
||
|
tensor = torch.from_numpy(item)
|
||
|
# Everything else: Convert to numpy, then wrap as torch tensor.
|
||
|
else:
|
||
|
tensor = torch.from_numpy(np.asarray(item))
|
||
|
# Floatify all float64 tensors.
|
||
|
if tensor.dtype == torch.double:
|
||
|
tensor = tensor.float()
|
||
|
return tensor if device is None else tensor.to(device)
|
||
|
|
||
|
return tree.map_structure(mapping, x)
|
||
|
|
||
|
|
||
|
def explained_variance(y: TensorType, pred: TensorType) -> TensorType:
|
||
|
"""Computes the explained variance for a pair of labels and predictions.
|
||
|
|
||
|
The formula used is:
|
||
|
max(-1.0, 1.0 - (std(y - pred)^2 / std(y)^2))
|
||
|
|
||
|
Args:
|
||
|
y: The labels.
|
||
|
pred: The predictions.
|
||
|
|
||
|
Returns:
|
||
|
The explained variance given a pair of labels and predictions.
|
||
|
"""
|
||
|
y_var = torch.var(y, dim=[0])
|
||
|
diff_var = torch.var(y - pred, dim=[0])
|
||
|
min_ = torch.tensor([-1.0]).to(pred.device)
|
||
|
return torch.max(min_, 1 - (diff_var / y_var))[0]
|
||
|
|
||
|
|
||
|
def global_norm(tensors: List[TensorType]) -> TensorType:
|
||
|
"""Returns the global L2 norm over a list of tensors.
|
||
|
|
||
|
output = sqrt(SUM(t ** 2 for t in tensors)),
|
||
|
where SUM reduces over all tensors and over all elements in tensors.
|
||
|
|
||
|
Args:
|
||
|
tensors: The list of tensors to calculate the global norm over.
|
||
|
|
||
|
Returns:
|
||
|
The global L2 norm over the given tensor list.
|
||
|
"""
|
||
|
# List of single tensors' L2 norms: SQRT(SUM(xi^2)) over all xi in tensor.
|
||
|
single_l2s = [
|
||
|
torch.pow(torch.sum(torch.pow(t, 2.0)), 0.5) for t in tensors
|
||
|
]
|
||
|
# Compute global norm from all single tensors' L2 norms.
|
||
|
return torch.pow(sum(torch.pow(l2, 2.0) for l2 in single_l2s), 0.5)
|
||
|
|
||
|
|
||
|
def huber_loss(x: TensorType, delta: float = 1.0) -> TensorType:
|
||
|
"""Computes the huber loss for a given term and delta parameter.
|
||
|
|
||
|
Reference: https://en.wikipedia.org/wiki/Huber_loss
|
||
|
Note that the factor of 0.5 is implicitly included in the calculation.
|
||
|
|
||
|
Formula:
|
||
|
L = 0.5 * x^2 for small abs x (delta threshold)
|
||
|
L = delta * (abs(x) - 0.5*delta) for larger abs x (delta threshold)
|
||
|
|
||
|
Args:
|
||
|
x: The input term, e.g. a TD error.
|
||
|
delta: The delta parmameter in the above formula.
|
||
|
|
||
|
Returns:
|
||
|
The Huber loss resulting from `x` and `delta`.
|
||
|
"""
|
||
|
return torch.where(
|
||
|
torch.abs(x) < delta,
|
||
|
torch.pow(x, 2.0) * 0.5, delta * (torch.abs(x) - 0.5 * delta))
|
||
|
|
||
|
|
||
|
def l2_loss(x: TensorType) -> TensorType:
|
||
|
"""Computes half the L2 norm over a tensor's values without the sqrt.
|
||
|
|
||
|
output = 0.5 * sum(x ** 2)
|
||
|
|
||
|
Args:
|
||
|
x: The input tensor.
|
||
|
|
||
|
Returns:
|
||
|
0.5 times the L2 norm over the given tensor's values (w/o sqrt).
|
||
|
"""
|
||
|
return 0.5 * torch.sum(torch.pow(x, 2.0))
|
||
|
|
||
|
|
||
|
def minimize_and_clip(optimizer: "torch.optim.Optimizer",
|
||
|
clip_val: float = 10.0) -> None:
|
||
|
"""Clips grads found in `optimizer.param_groups` to given value in place.
|
||
|
|
||
|
Ensures the norm of the gradients for each variable is clipped to
|
||
|
`clip_val`.
|
||
|
|
||
|
Args:
|
||
|
optimizer: The torch.optim.Optimizer to get the variables from.
|
||
|
clip_val: The global norm clip value. Will clip around -clip_val and
|
||
|
+clip_val.
|
||
|
"""
|
||
|
# Loop through optimizer's variables and norm per variable.
|
||
|
for param_group in optimizer.param_groups:
|
||
|
for p in param_group["params"]:
|
||
|
if p.grad is not None:
|
||
|
torch.nn.utils.clip_grad_norm_(p.grad, clip_val)
|
||
|
|
||
|
|
||
|
def one_hot(x: TensorType, space: gym.Space) -> TensorType:
|
||
|
"""Returns a one-hot tensor, given and int tensor and a space.
|
||
|
|
||
|
Handles the MultiDiscrete case as well.
|
||
|
|
||
|
Args:
|
||
|
x: The input tensor.
|
||
|
space: The space to use for generating the one-hot tensor.
|
||
|
|
||
|
Returns:
|
||
|
The resulting one-hot tensor.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the given space is not a discrete one.
|
||
|
|
||
|
Examples:
|
||
|
>>> x = torch.IntTensor([0, 3]) # batch-dim=2
|
||
|
>>> # Discrete space with 4 (one-hot) slots per batch item.
|
||
|
>>> s = gym.spaces.Discrete(4)
|
||
|
>>> one_hot(x, s)
|
||
|
tensor([[1, 0, 0, 0], [0, 0, 0, 1]])
|
||
|
|
||
|
>>> x = torch.IntTensor([[0, 1, 2, 3]]) # batch-dim=1
|
||
|
>>> # MultiDiscrete space with 5 + 4 + 4 + 7 = 20 (one-hot) slots
|
||
|
>>> # per batch item.
|
||
|
>>> s = gym.spaces.MultiDiscrete([5, 4, 4, 7])
|
||
|
>>> one_hot(x, s)
|
||
|
tensor([[1, 0, 0, 0, 0,
|
||
|
0, 1, 0, 0,
|
||
|
0, 0, 1, 0,
|
||
|
0, 0, 0, 1, 0, 0, 0]])
|
||
|
"""
|
||
|
if isinstance(space, Discrete):
|
||
|
return nn.functional.one_hot(x.long(), space.n)
|
||
|
elif isinstance(space, MultiDiscrete):
|
||
|
return torch.cat(
|
||
|
[
|
||
|
nn.functional.one_hot(x[:, i].long(), n)
|
||
|
for i, n in enumerate(space.nvec)
|
||
|
],
|
||
|
dim=-1)
|
||
|
else:
|
||
|
raise ValueError("Unsupported space for `one_hot`: {}".format(space))
|
||
|
|
||
|
|
||
|
def reduce_mean_ignore_inf(x: TensorType,
|
||
|
axis: Optional[int] = None) -> TensorType:
|
||
|
"""Same as torch.mean() but ignores -inf values.
|
||
|
|
||
|
Args:
|
||
|
x: The input tensor to reduce mean over.
|
||
|
axis: The axis over which to reduce. None for all axes.
|
||
|
|
||
|
Returns:
|
||
|
The mean reduced inputs, ignoring inf values.
|
||
|
"""
|
||
|
mask = torch.ne(x, float("-inf"))
|
||
|
x_zeroed = torch.where(mask, x, torch.zeros_like(x))
|
||
|
return torch.sum(x_zeroed, axis) / torch.sum(mask.float(), axis)
|
||
|
|
||
|
|
||
|
def sequence_mask(
|
||
|
lengths: TensorType,
|
||
|
maxlen: Optional[int] = None,
|
||
|
dtype=None,
|
||
|
time_major: bool = False,
|
||
|
) -> TensorType:
|
||
|
"""Offers same behavior as tf.sequence_mask for torch.
|
||
|
|
||
|
Thanks to Dimitris Papatheodorou
|
||
|
(https://discuss.pytorch.org/t/pytorch-equivalent-for-tf-sequence-mask/
|
||
|
39036).
|
||
|
|
||
|
Args:
|
||
|
lengths: The tensor of individual lengths to mask by.
|
||
|
maxlen: The maximum length to use for the time axis. If None, use
|
||
|
the max of `lengths`.
|
||
|
dtype: The torch dtype to use for the resulting mask.
|
||
|
time_major: Whether to return the mask as [B, T] (False; default) or
|
||
|
as [T, B] (True).
|
||
|
|
||
|
Returns:
|
||
|
The sequence mask resulting from the given input and parameters.
|
||
|
"""
|
||
|
# If maxlen not given, use the longest lengths in the `lengths` tensor.
|
||
|
if maxlen is None:
|
||
|
maxlen = int(lengths.max())
|
||
|
|
||
|
mask = ~(torch.ones(
|
||
|
(len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths)
|
||
|
# Time major transformation.
|
||
|
if not time_major:
|
||
|
mask = mask.t()
|
||
|
|
||
|
# By default, set the mask to be boolean.
|
||
|
mask.type(dtype or torch.bool)
|
||
|
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def set_torch_seed(seed: Optional[int] = None) -> None:
|
||
|
"""Sets the torch random seed to the given value.
|
||
|
|
||
|
Args:
|
||
|
seed: The seed to use or None for no seeding.
|
||
|
"""
|
||
|
if seed is not None and torch:
|
||
|
torch.manual_seed(seed)
|
||
|
# See https://github.com/pytorch/pytorch/issues/47672.
|
||
|
cuda_version = torch.version.cuda
|
||
|
if cuda_version is not None and float(torch.version.cuda) >= 10.2:
|
||
|
os.environ["CUBLAS_WORKSPACE_CONFIG"] = "4096:8"
|
||
|
else:
|
||
|
# Not all Operations support this.
|
||
|
torch.use_deterministic_algorithms(True)
|
||
|
# This is only for Convolution no problem.
|
||
|
torch.backends.cudnn.deterministic = True
|
||
|
|
||
|
|
||
|
def softmax_cross_entropy_with_logits(
|
||
|
logits: TensorType,
|
||
|
labels: TensorType,
|
||
|
) -> TensorType:
|
||
|
"""Same behavior as tf.nn.softmax_cross_entropy_with_logits.
|
||
|
|
||
|
Args:
|
||
|
x: The input predictions.
|
||
|
labels: The labels corresponding to `x`.
|
||
|
|
||
|
Returns:
|
||
|
The resulting softmax cross-entropy given predictions and labels.
|
||
|
"""
|
||
|
return torch.sum(-labels * nn.functional.log_softmax(logits, -1), -1)
|
||
|
|
||
|
|
||
|
class Swish(nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self._beta = nn.Parameter(torch.tensor(1.0))
|
||
|
|
||
|
def forward(self, input_tensor):
|
||
|
return input_tensor * torch.sigmoid(self._beta * input_tensor)
|