ray/rllib/agents/impala/tests/test_impala.py

113 lines
3.8 KiB
Python
Raw Normal View History

import copy
import unittest
import ray
import ray.rllib.agents.impala as impala
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check, \
check_compute_single_action, framework_iterator
tf1, tf, tfv = try_import_tf()
class TestIMPALA(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_impala_compilation(self):
"""Test whether an ImpalaTrainer can be built with both frameworks."""
config = impala.DEFAULT_CONFIG.copy()
config["num_gpus"] = 0
config["model"]["lstm_use_prev_action"] = True
config["model"]["lstm_use_prev_reward"] = True
num_iterations = 1
env = "CartPole-v0"
2020-07-11 22:06:35 +02:00
for _ in framework_iterator(config):
local_cfg = config.copy()
for lstm in [False, True]:
local_cfg["num_aggregation_workers"] = 0 if not lstm else 1
local_cfg["model"]["use_lstm"] = lstm
print("lstm={} aggregation-worker={}".format(
lstm, local_cfg["num_aggregation_workers"]))
# Test with and w/o aggregation workers (this has nothing
# to do with LSTMs, though).
trainer = impala.ImpalaTrainer(config=local_cfg, env=env)
for i in range(num_iterations):
print(trainer.train())
check_compute_single_action(
trainer,
include_state=lstm,
include_prev_action_reward=lstm,
)
trainer.stop()
def test_impala_lr_schedule(self):
config = impala.DEFAULT_CONFIG.copy()
config["num_gpus"] = 0
# Test whether we correctly ignore the "lr" setting.
# The first lr should be 0.0005.
config["lr"] = 0.1
config["lr_schedule"] = [
[0, 0.0005],
[10000, 0.000001],
]
config["num_gpus"] = 0 # Do not use any (fake) GPUs.
config["env"] = "CartPole-v0"
def get_lr(result):
return result["info"]["learner"][DEFAULT_POLICY_ID]["cur_lr"]
for fw in framework_iterator(config, frameworks=("tf", "torch")):
trainer = impala.ImpalaTrainer(config=config)
policy = trainer.get_policy()
try:
if fw == "tf":
check(policy.get_session().run(policy.cur_lr), 0.0005)
else:
check(policy.cur_lr, 0.0005)
r1 = trainer.train()
r2 = trainer.train()
assert get_lr(r2) < get_lr(r1), (r1, r2)
finally:
trainer.stop()
def test_impala_fake_multi_gpu_learning(self):
"""Test whether IMPALATrainer can learn CartPole w/ faked multi-GPU."""
config = copy.deepcopy(impala.DEFAULT_CONFIG)
# Fake GPU setup.
config["_fake_gpus"] = True
config["num_gpus"] = 2
config["train_batch_size"] *= 2
# Test w/ LSTMs.
config["model"]["use_lstm"] = True
for _ in framework_iterator(config, frameworks=("tf", "torch")):
trainer = impala.ImpalaTrainer(config=config, env="CartPole-v0")
num_iterations = 200
learnt = False
for i in range(num_iterations):
results = trainer.train()
print(results)
if results["episode_reward_mean"] > 55.0:
learnt = True
break
assert learnt, \
"IMPALA multi-GPU (with fake-GPUs) did not learn CartPole!"
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))