import copy import unittest import ray import ray.rllib.agents.impala as impala from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check, \ check_compute_single_action, framework_iterator tf1, tf, tfv = try_import_tf() class TestIMPALA(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_impala_compilation(self): """Test whether an ImpalaTrainer can be built with both frameworks.""" config = impala.DEFAULT_CONFIG.copy() config["num_gpus"] = 0 config["model"]["lstm_use_prev_action"] = True config["model"]["lstm_use_prev_reward"] = True num_iterations = 1 env = "CartPole-v0" for _ in framework_iterator(config): local_cfg = config.copy() for lstm in [False, True]: local_cfg["num_aggregation_workers"] = 0 if not lstm else 1 local_cfg["model"]["use_lstm"] = lstm print("lstm={} aggregation-worker={}".format( lstm, local_cfg["num_aggregation_workers"])) # Test with and w/o aggregation workers (this has nothing # to do with LSTMs, though). trainer = impala.ImpalaTrainer(config=local_cfg, env=env) for i in range(num_iterations): print(trainer.train()) check_compute_single_action( trainer, include_state=lstm, include_prev_action_reward=lstm, ) trainer.stop() def test_impala_lr_schedule(self): config = impala.DEFAULT_CONFIG.copy() config["num_gpus"] = 0 # Test whether we correctly ignore the "lr" setting. # The first lr should be 0.0005. config["lr"] = 0.1 config["lr_schedule"] = [ [0, 0.0005], [10000, 0.000001], ] config["num_gpus"] = 0 # Do not use any (fake) GPUs. config["env"] = "CartPole-v0" def get_lr(result): return result["info"]["learner"][DEFAULT_POLICY_ID]["cur_lr"] for fw in framework_iterator(config, frameworks=("tf", "torch")): trainer = impala.ImpalaTrainer(config=config) policy = trainer.get_policy() try: if fw == "tf": check(policy.get_session().run(policy.cur_lr), 0.0005) else: check(policy.cur_lr, 0.0005) r1 = trainer.train() r2 = trainer.train() assert get_lr(r2) < get_lr(r1), (r1, r2) finally: trainer.stop() def test_impala_fake_multi_gpu_learning(self): """Test whether IMPALATrainer can learn CartPole w/ faked multi-GPU.""" config = copy.deepcopy(impala.DEFAULT_CONFIG) # Fake GPU setup. config["_fake_gpus"] = True config["num_gpus"] = 2 config["train_batch_size"] *= 2 # Test w/ LSTMs. config["model"]["use_lstm"] = True for _ in framework_iterator(config, frameworks=("tf", "torch")): trainer = impala.ImpalaTrainer(config=config, env="CartPole-v0") num_iterations = 200 learnt = False for i in range(num_iterations): results = trainer.train() print(results) if results["episode_reward_mean"] > 55.0: learnt = True break assert learnt, \ "IMPALA multi-GPU (with fake-GPUs) did not learn CartPole!" trainer.stop() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))