ray/rllib/agents/dqn/simple_q_policy.py

175 lines
5.9 KiB
Python
Raw Normal View History

2019-07-03 15:59:47 -07:00
"""Basic example of a DQN policy without any optimizations."""
from gym.spaces import Discrete
import logging
2019-07-03 15:59:47 -07:00
import ray
from ray.rllib.agents.dqn.simple_q_model import SimpleQModel
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.policy.tf_policy import TFPolicy
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.utils import try_import_tf
from ray.rllib.utils.tf_ops import huber_loss, make_tf_callable
2019-07-03 15:59:47 -07:00
tf = try_import_tf()
logger = logging.getLogger(__name__)
2019-07-03 15:59:47 -07:00
Q_SCOPE = "q_func"
Q_TARGET_SCOPE = "target_q_func"
class ParameterNoiseMixin:
2019-07-03 15:59:47 -07:00
def __init__(self, obs_space, action_space, config):
pass
2019-07-03 15:59:47 -07:00
def add_parameter_noise(self):
if self.config["parameter_noise"]:
self.sess.run(self.add_noise_op)
class TargetNetworkMixin:
2019-07-03 15:59:47 -07:00
def __init__(self, obs_space, action_space, config):
@make_tf_callable(self.get_session())
def do_update():
# update_target_fn will be called periodically to copy Q network to
# target Q network
update_target_expr = []
assert len(self.q_func_vars) == len(self.target_q_func_vars), \
(self.q_func_vars, self.target_q_func_vars)
for var, var_target in zip(self.q_func_vars,
self.target_q_func_vars):
update_target_expr.append(var_target.assign(var))
logger.debug("Update target op {}".format(var_target))
return tf.group(*update_target_expr)
self.update_target = do_update
2019-07-03 15:59:47 -07:00
@override(TFPolicy)
def variables(self):
return self.q_func_vars + self.target_q_func_vars
2019-07-03 15:59:47 -07:00
def build_q_models(policy, obs_space, action_space, config):
if not isinstance(action_space, Discrete):
raise UnsupportedSpaceException(
"Action space {} is not supported for DQN.".format(action_space))
if config["hiddens"]:
num_outputs = 256
config["model"]["no_final_linear"] = True
else:
num_outputs = action_space.n
policy.q_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
name=Q_SCOPE,
model_interface=SimpleQModel,
q_hiddens=config["hiddens"])
policy.target_q_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
name=Q_TARGET_SCOPE,
model_interface=SimpleQModel,
q_hiddens=config["hiddens"])
return policy.q_model
def sample_action_from_q_network(policy, q_model, input_dict, obs_space,
action_space, config):
2019-07-03 15:59:47 -07:00
# Action Q network
q_values = _compute_q_values(policy, q_model,
input_dict[SampleBatch.CUR_OBS], obs_space,
action_space)
policy.q_values = q_values
policy.q_func_vars = q_model.variables()
# Action outputs.
return tf.argmax(q_values, axis=1), None
2019-07-03 15:59:47 -07:00
def build_q_losses(policy, model, dist_class, train_batch):
2019-07-03 15:59:47 -07:00
# q network evaluation
q_t = _compute_q_values(policy, policy.q_model,
train_batch[SampleBatch.CUR_OBS],
2019-07-03 15:59:47 -07:00
policy.observation_space, policy.action_space)
# target q network evalution
q_tp1 = _compute_q_values(policy, policy.target_q_model,
train_batch[SampleBatch.NEXT_OBS],
2019-07-03 15:59:47 -07:00
policy.observation_space, policy.action_space)
policy.target_q_func_vars = policy.target_q_model.variables()
# q scores for actions which we know were selected in the given state.
one_hot_selection = tf.one_hot(
tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32),
2019-07-03 15:59:47 -07:00
policy.action_space.n)
q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
# compute estimate of best possible value starting from state at t + 1
dones = tf.cast(train_batch[SampleBatch.DONES], tf.float32)
2019-07-03 15:59:47 -07:00
q_tp1_best_one_hot_selection = tf.one_hot(
tf.argmax(q_tp1, 1), policy.action_space.n)
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
q_tp1_best_masked = (1.0 - dones) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = (train_batch[SampleBatch.REWARDS] +
2019-07-03 15:59:47 -07:00
policy.config["gamma"] * q_tp1_best_masked)
# compute the error (potentially clipped)
td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
loss = tf.reduce_mean(huber_loss(td_error))
# save TD error as an attribute for outside access
policy.td_error = td_error
return loss
def _compute_q_values(policy, model, obs, obs_space, action_space):
input_dict = {
"obs": obs,
"is_training": policy._get_is_training_placeholder(),
}
model_out, _ = model(input_dict, [], None)
return model.get_q_values(model_out)
def setup_early_mixins(policy, obs_space, action_space, config):
ParameterNoiseMixin.__init__(policy, obs_space, action_space, config)
2019-07-03 15:59:47 -07:00
def setup_late_mixins(policy, obs_space, action_space, config):
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
SimpleQPolicy = build_tf_policy(
name="SimpleQPolicy",
get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG,
make_model=build_q_models,
action_sampler_fn=sample_action_from_q_network,
2019-07-03 15:59:47 -07:00
loss_fn=build_q_losses,
extra_action_fetches_fn=lambda policy: {"q_values": policy.q_values},
extra_learn_fetches_fn=lambda policy: {"td_error": policy.td_error},
before_init=setup_early_mixins,
after_init=setup_late_mixins,
obs_include_prev_action_reward=False,
mixins=[
ParameterNoiseMixin,
2019-07-03 15:59:47 -07:00
TargetNetworkMixin,
])