ray/rllib/agents/dqn/simple_q_policy.py

215 lines
7.3 KiB
Python
Raw Normal View History

2019-07-03 15:59:47 -07:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Basic example of a DQN policy without any optimizations."""
from gym.spaces import Discrete
import logging
2019-07-03 15:59:47 -07:00
import ray
from ray.rllib.agents.dqn.simple_q_model import SimpleQModel
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.policy.tf_policy import TFPolicy
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.utils import try_import_tf
from ray.rllib.utils.tf_ops import huber_loss
tf = try_import_tf()
logger = logging.getLogger(__name__)
2019-07-03 15:59:47 -07:00
Q_SCOPE = "q_func"
Q_TARGET_SCOPE = "target_q_func"
class ExplorationStateMixin(object):
def __init__(self, obs_space, action_space, config):
self.cur_epsilon = 1.0
self.stochastic = tf.placeholder(tf.bool, (), name="stochastic")
self.eps = tf.placeholder(tf.float32, (), name="eps")
def add_parameter_noise(self):
if self.config["parameter_noise"]:
self.sess.run(self.add_noise_op)
def set_epsilon(self, epsilon):
self.cur_epsilon = epsilon
@override(Policy)
def get_state(self):
return [TFPolicy.get_state(self), self.cur_epsilon]
@override(Policy)
def set_state(self, state):
TFPolicy.set_state(self, state[0])
self.set_epsilon(state[1])
class TargetNetworkMixin(object):
def __init__(self, obs_space, action_space, config):
# update_target_fn will be called periodically to copy Q network to
# target Q network
update_target_expr = []
assert len(self.q_func_vars) == len(self.target_q_func_vars), \
(self.q_func_vars, self.target_q_func_vars)
for var, var_target in zip(self.q_func_vars, self.target_q_func_vars):
update_target_expr.append(var_target.assign(var))
logger.debug("Update target op {}".format(var_target))
2019-07-03 15:59:47 -07:00
self.update_target_expr = tf.group(*update_target_expr)
def update_target(self):
return self.get_session().run(self.update_target_expr)
def build_q_models(policy, obs_space, action_space, config):
if not isinstance(action_space, Discrete):
raise UnsupportedSpaceException(
"Action space {} is not supported for DQN.".format(action_space))
if config["hiddens"]:
num_outputs = 256
config["model"]["no_final_linear"] = True
else:
num_outputs = action_space.n
policy.q_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
name=Q_SCOPE,
model_interface=SimpleQModel,
q_hiddens=config["hiddens"])
policy.target_q_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
num_outputs,
config["model"],
framework="tf",
name=Q_TARGET_SCOPE,
model_interface=SimpleQModel,
q_hiddens=config["hiddens"])
return policy.q_model
def build_action_sampler(policy, q_model, input_dict, obs_space, action_space,
config):
# Action Q network
q_values = _compute_q_values(policy, q_model,
input_dict[SampleBatch.CUR_OBS], obs_space,
action_space)
policy.q_values = q_values
policy.q_func_vars = q_model.variables()
# Action outputs
deterministic_actions = tf.argmax(q_values, axis=1)
batch_size = tf.shape(input_dict[SampleBatch.CUR_OBS])[0]
# Special case masked out actions (q_value ~= -inf) so that we don't
# even consider them for exploration.
random_valid_action_logits = tf.where(
tf.equal(q_values, tf.float32.min),
tf.ones_like(q_values) * tf.float32.min, tf.ones_like(q_values))
random_actions = tf.squeeze(
tf.multinomial(random_valid_action_logits, 1), axis=1)
chose_random = tf.random_uniform(
tf.stack([batch_size]), minval=0, maxval=1,
dtype=tf.float32) < policy.eps
stochastic_actions = tf.where(chose_random, random_actions,
deterministic_actions)
action = tf.cond(policy.stochastic, lambda: stochastic_actions,
lambda: deterministic_actions)
action_logp = None
2019-07-03 15:59:47 -07:00
return action, action_logp
2019-07-03 15:59:47 -07:00
def build_q_losses(policy, batch_tensors):
# q network evaluation
q_t = _compute_q_values(policy, policy.q_model,
batch_tensors[SampleBatch.CUR_OBS],
policy.observation_space, policy.action_space)
# target q network evalution
q_tp1 = _compute_q_values(policy, policy.target_q_model,
batch_tensors[SampleBatch.NEXT_OBS],
policy.observation_space, policy.action_space)
policy.target_q_func_vars = policy.target_q_model.variables()
# q scores for actions which we know were selected in the given state.
one_hot_selection = tf.one_hot(
tf.cast(batch_tensors[SampleBatch.ACTIONS], tf.int32),
policy.action_space.n)
q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
# compute estimate of best possible value starting from state at t + 1
dones = tf.cast(batch_tensors[SampleBatch.DONES], tf.float32)
q_tp1_best_one_hot_selection = tf.one_hot(
tf.argmax(q_tp1, 1), policy.action_space.n)
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
q_tp1_best_masked = (1.0 - dones) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = (batch_tensors[SampleBatch.REWARDS] +
policy.config["gamma"] * q_tp1_best_masked)
# compute the error (potentially clipped)
td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
loss = tf.reduce_mean(huber_loss(td_error))
# save TD error as an attribute for outside access
policy.td_error = td_error
return loss
def _compute_q_values(policy, model, obs, obs_space, action_space):
input_dict = {
"obs": obs,
"is_training": policy._get_is_training_placeholder(),
}
model_out, _ = model(input_dict, [], None)
return model.get_q_values(model_out)
def exploration_setting_inputs(policy):
return {
policy.stochastic: True,
policy.eps: policy.cur_epsilon,
}
def setup_early_mixins(policy, obs_space, action_space, config):
ExplorationStateMixin.__init__(policy, obs_space, action_space, config)
def setup_late_mixins(policy, obs_space, action_space, config):
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
SimpleQPolicy = build_tf_policy(
name="SimpleQPolicy",
get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG,
make_model=build_q_models,
action_sampler_fn=build_action_sampler,
loss_fn=build_q_losses,
extra_action_feed_fn=exploration_setting_inputs,
extra_action_fetches_fn=lambda policy: {"q_values": policy.q_values},
extra_learn_fetches_fn=lambda policy: {"td_error": policy.td_error},
before_init=setup_early_mixins,
after_init=setup_late_mixins,
obs_include_prev_action_reward=False,
mixins=[
ExplorationStateMixin,
TargetNetworkMixin,
])