ray/doc/source/index.rst

245 lines
5.9 KiB
ReStructuredText
Raw Normal View History

Ray
===
.. raw:: html
<embed>
<a href="https://github.com/ray-project/ray"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/365986a132ccd6a44c23a9169022c0b5c890c387/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f7265645f6161303030302e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_red_aa0000.png"></a>
</embed>
*Ray is a fast and simple framework for building and running distributed applications.*
2019-08-05 23:33:14 -07:00
Ray comes with libraries that accelerate deep learning and reinforcement learning development:
2019-08-05 23:33:14 -07:00
- `Tune`_: Scalable Hyperparameter Search
- `RLlib`_: Scalable Reinforcement Learning
- `Distributed Training <distributed_training.html>`__
2019-08-05 23:33:14 -07:00
Install Ray with: ``pip install ray``. For nightly wheels, see the `Installation page <installation.html>`__.
View the `codebase on GitHub`_.
.. _`codebase on GitHub`: https://github.com/ray-project/ray
2019-08-05 23:33:14 -07:00
Quick Start
-----------
.. code-block:: python
ray.init()
@ray.remote
def f(x):
return x * x
futures = [f.remote(i) for i in range(4)]
print(ray.get(futures))
To use Ray's actor model:
.. code-block:: python
ray.init()
@ray.remote
class Counter():
def __init__(self):
self.n = 0
def increment(self):
2019-08-05 23:33:14 -07:00
self.n += 1
def read(self):
return self.n
counters = [Counter.remote() for i in range(4)]
[c.increment.remote() for c in counters]
futures = [c.read.remote() for c in counters]
print(ray.get(futures))
Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file <https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/aws/example-full.yaml>`__, and run:
``ray submit [CLUSTER.YAML] example.py --start``
See more details in the `Cluster Launch page <autoscaling.html>`_.
Tune Quick Start
----------------
`Tune`_ is a scalable framework for hyperparameter search built on top of Ray with a focus on deep learning and deep reinforcement learning.
.. note::
To run this example, you will need to install the following:
.. code-block:: bash
$ pip install ray torch torchvision filelock
2019-08-05 23:33:14 -07:00
This example runs a small grid search to train a CNN using PyTorch and Tune.
2019-08-05 23:33:14 -07:00
.. literalinclude:: ../../python/ray/tune/tests/example.py
:language: python
:start-after: __quick_start_begin__
:end-before: __quick_start_end__
If TensorBoard is installed, automatically visualize all trial results:
.. code-block:: bash
2019-08-05 23:33:14 -07:00
tensorboard --logdir ~/ray_results
.. _`Tune`: tune.html
2019-08-05 23:33:14 -07:00
RLlib Quick Start
-----------------
`RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications.
.. code-block:: bash
pip install tensorflow # or tensorflow-gpu
pip install ray[rllib] # also recommended: ray[debug]
.. code-block:: python
import gym
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config["corridor_length"]
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1, ))
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
tune.run(
"PPO",
config={
"env": SimpleCorridor,
"num_workers": 4,
"env_config": {"corridor_length": 5}})
.. _`RLlib`: rllib.html
2019-08-05 23:33:14 -07:00
Contact
-------
The following are good places to discuss Ray.
1. `ray-dev@googlegroups.com`_: For discussions about development or any general
questions.
2. `StackOverflow`_: For questions about how to use Ray.
3. `GitHub Issues`_: For bug reports and feature requests.
.. _`ray-dev@googlegroups.com`: https://groups.google.com/forum/#!forum/ray-dev
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. toctree::
:maxdepth: 1
:caption: Installation
installation.rst
2017-03-04 23:06:02 -08:00
.. toctree::
:maxdepth: 1
2019-08-05 23:33:14 -07:00
:caption: Using Ray
2017-03-04 23:06:02 -08:00
2019-08-05 23:33:14 -07:00
walkthrough.rst
actors.rst
using-ray-with-gpus.rst
2019-08-05 23:33:14 -07:00
user-profiling.rst
inspect.rst
configure.rst
advanced.rst
troubleshooting.rst
package-ref.rst
.. toctree::
:maxdepth: 1
2019-08-05 23:33:14 -07:00
:caption: Cluster Setup
autoscaling.rst
using-ray-on-a-cluster.rst
2019-08-05 23:33:14 -07:00
deploy-on-kubernetes.rst
.. toctree::
:maxdepth: 1
:caption: Tune
tune.rst
tune-tutorial.rst
tune-usage.rst
tune-distributed.rst
tune-schedulers.rst
tune-searchalg.rst
tune-package-ref.rst
tune-design.rst
tune-examples.rst
tune-contrib.rst
.. toctree::
:maxdepth: 1
:caption: RLlib
rllib.rst
[rllib] Document "v2" APIs (#2316) * re * wip * wip * a3c working * torch support * pg works * lint * rm v2 * consumer id * clean up pg * clean up more * fix python 2.7 * tf session management * docs * dqn wip * fix compile * dqn * apex runs * up * impotrs * ddpg * quotes * fix tests * fix last r * fix tests * lint * pass checkpoint restore * kwar * nits * policy graph * fix yapf * com * class * pyt * vectorization * update * test cpe * unit test * fix ddpg2 * changes * wip * args * faster test * common * fix * add alg option * batch mode and policy serving * multi serving test * todo * wip * serving test * doc async env * num envs * comments * thread * remove init hook * update * fix ppo * comments1 * fix * updates * add jenkins tests * fix * fix pytorch * fix * fixes * fix a3c policy * fix squeeze * fix trunc on apex * fix squeezing for real * update * remove horizon test for now * multiagent wip * update * fix race condition * fix ma * t * doc * st * wip * example * wip * working * cartpole * wip * batch wip * fix bug * make other_batches None default * working * debug * nit * warn * comments * fix ppo * fix obs filter * update * wip * tf * update * fix * cleanup * cleanup * spacing * model * fix * dqn * fix ddpg * doc * keep names * update * fix * com * docs * clarify model outputs * Update torch_policy_graph.py * fix obs filter * pass thru worker index * fix * rename * vlad torch comments * fix log action * debug name * fix lstm * remove unused ddpg net * remove conv net * revert lstm * wip * wip * cast * wip * works * fix a3c * works * lstm util test * doc * clean up * update * fix lstm check * move to end * fix sphinx * fix cmd * remove bad doc * envs * vec * doc prep * models * rl * alg * up * clarify * copy * async sa * fix * comments * fix a3c conf * tune lstm * fix reshape * fix * back to 16 * tuned a3c update * update * tuned * optional * merge * wip * fix up * move pg class * rename env * wip * update * tip * alg * readme * fix catalog * readme * doc * context * remove prep * comma * add env * link to paper * paper * update * rnn * update * wip * clean up ev creation * fix * fix * fix * fix lint * up * no comma * ma * Update run_multi_node_tests.sh * fix * sphinx is stupid * sphinx is stupid * clarify torch graph * no horizon * fix config * sb * Update test_optimizers.py
2018-07-01 00:05:08 -07:00
rllib-training.rst
rllib-env.rst
rllib-models.rst
rllib-algorithms.rst
rllib-offline.rst
rllib-concepts.rst
rllib-examples.rst
rllib-dev.rst
rllib-package-ref.rst
2017-03-04 23:06:02 -08:00
.. toctree::
:maxdepth: 1
2019-08-05 23:33:14 -07:00
:caption: Experimental
distributed_training.rst
pandas_on_ray.rst
2019-08-05 23:33:14 -07:00
signals.rst
async_api.rst
.. toctree::
:maxdepth: 1
:caption: Examples
example-rl-pong.rst
example-parameter-server.rst
example-newsreader.rst
example-resnet.rst
example-a3c.rst
example-lbfgs.rst
example-streaming.rst
using-ray-with-tensorflow.rst
.. toctree::
:maxdepth: 1
2019-08-05 23:33:14 -07:00
:caption: Development and Internals
2019-08-05 23:33:14 -07:00
install-source.rst
development.rst
profiling.rst
2019-08-05 23:33:14 -07:00
internals-overview.rst
fault-tolerance.rst
contrib.rst