Ray === .. raw:: html Fork me on GitHub *Ray is a fast and simple framework for building and running distributed applications.* Ray comes with libraries that accelerate deep learning and reinforcement learning development: - `Tune`_: Scalable Hyperparameter Search - `RLlib`_: Scalable Reinforcement Learning - `Distributed Training `__ Install Ray with: ``pip install ray``. For nightly wheels, see the `Installation page `__. View the `codebase on GitHub`_. .. _`codebase on GitHub`: https://github.com/ray-project/ray Quick Start ----------- .. code-block:: python ray.init() @ray.remote def f(x): return x * x futures = [f.remote(i) for i in range(4)] print(ray.get(futures)) To use Ray's actor model: .. code-block:: python ray.init() @ray.remote class Counter(): def __init__(self): self.n = 0 def increment(self): self.n += 1 def read(self): return self.n counters = [Counter.remote() for i in range(4)] [c.increment.remote() for c in counters] futures = [c.read.remote() for c in counters] print(ray.get(futures)) Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file `__, and run: ``ray submit [CLUSTER.YAML] example.py --start`` See more details in the `Cluster Launch page `_. Tune Quick Start ---------------- `Tune`_ is a scalable framework for hyperparameter search built on top of Ray with a focus on deep learning and deep reinforcement learning. .. note:: To run this example, you will need to install the following: .. code-block:: bash $ pip install ray torch torchvision filelock This example runs a small grid search to train a CNN using PyTorch and Tune. .. literalinclude:: ../../python/ray/tune/tests/example.py :language: python :start-after: __quick_start_begin__ :end-before: __quick_start_end__ If TensorBoard is installed, automatically visualize all trial results: .. code-block:: bash tensorboard --logdir ~/ray_results .. _`Tune`: tune.html RLlib Quick Start ----------------- `RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications. .. code-block:: bash pip install tensorflow # or tensorflow-gpu pip install ray[rllib] # also recommended: ray[debug] .. code-block:: python import gym from gym.spaces import Discrete, Box from ray import tune class SimpleCorridor(gym.Env): def __init__(self, config): self.end_pos = config["corridor_length"] self.cur_pos = 0 self.action_space = Discrete(2) self.observation_space = Box(0.0, self.end_pos, shape=(1, )) def reset(self): self.cur_pos = 0 return [self.cur_pos] def step(self, action): if action == 0 and self.cur_pos > 0: self.cur_pos -= 1 elif action == 1: self.cur_pos += 1 done = self.cur_pos >= self.end_pos return [self.cur_pos], 1 if done else 0, done, {} tune.run( "PPO", config={ "env": SimpleCorridor, "num_workers": 4, "env_config": {"corridor_length": 5}}) .. _`RLlib`: rllib.html Contact ------- The following are good places to discuss Ray. 1. `ray-dev@googlegroups.com`_: For discussions about development or any general questions. 2. `StackOverflow`_: For questions about how to use Ray. 3. `GitHub Issues`_: For bug reports and feature requests. .. _`ray-dev@googlegroups.com`: https://groups.google.com/forum/#!forum/ray-dev .. _`GitHub Issues`: https://github.com/ray-project/ray/issues .. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray .. toctree:: :maxdepth: 1 :caption: Installation installation.rst .. toctree:: :maxdepth: 1 :caption: Using Ray walkthrough.rst actors.rst using-ray-with-gpus.rst user-profiling.rst inspect.rst configure.rst advanced.rst troubleshooting.rst package-ref.rst .. toctree:: :maxdepth: 1 :caption: Cluster Setup autoscaling.rst using-ray-on-a-cluster.rst deploy-on-kubernetes.rst .. toctree:: :maxdepth: 1 :caption: Tune tune.rst tune-tutorial.rst tune-usage.rst tune-distributed.rst tune-schedulers.rst tune-searchalg.rst tune-package-ref.rst tune-design.rst tune-examples.rst tune-contrib.rst .. toctree:: :maxdepth: 1 :caption: RLlib rllib.rst rllib-training.rst rllib-env.rst rllib-models.rst rllib-algorithms.rst rllib-offline.rst rllib-concepts.rst rllib-examples.rst rllib-dev.rst rllib-package-ref.rst .. toctree:: :maxdepth: 1 :caption: Experimental distributed_training.rst pandas_on_ray.rst signals.rst async_api.rst .. toctree:: :maxdepth: 1 :caption: Examples example-rl-pong.rst example-parameter-server.rst example-newsreader.rst example-resnet.rst example-a3c.rst example-lbfgs.rst example-streaming.rst using-ray-with-tensorflow.rst .. toctree:: :maxdepth: 1 :caption: Development and Internals install-source.rst development.rst profiling.rst internals-overview.rst fault-tolerance.rst contrib.rst