2020-04-29 12:12:59 +02:00
|
|
|
from ray.rllib.models.modelv2 import ModelV2
|
2019-01-03 13:48:33 +08:00
|
|
|
from ray.rllib.models.preprocessors import get_preprocessor
|
2019-07-25 11:02:53 -07:00
|
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
2019-01-03 13:48:33 +08:00
|
|
|
from ray.rllib.utils.annotations import override
|
2020-06-16 08:52:20 +02:00
|
|
|
from ray.rllib.utils.framework import try_import_torch
|
2019-12-30 15:27:32 -05:00
|
|
|
|
|
|
|
torch, nn = try_import_torch()
|
2018-12-18 10:40:01 -08:00
|
|
|
|
2019-01-03 13:48:33 +08:00
|
|
|
|
2019-07-27 02:08:16 -07:00
|
|
|
class RNNModel(TorchModelV2, nn.Module):
|
2019-01-03 13:48:33 +08:00
|
|
|
"""The default RNN model for QMIX."""
|
|
|
|
|
2022-01-29 18:41:57 -08:00
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config, name):
|
|
|
|
TorchModelV2.__init__(
|
|
|
|
self, obs_space, action_space, num_outputs, model_config, name
|
|
|
|
)
|
2019-07-27 02:08:16 -07:00
|
|
|
nn.Module.__init__(self)
|
2019-01-03 13:48:33 +08:00
|
|
|
self.obs_size = _get_size(obs_space)
|
2019-07-25 11:02:53 -07:00
|
|
|
self.rnn_hidden_dim = model_config["lstm_cell_size"]
|
2019-01-03 13:48:33 +08:00
|
|
|
self.fc1 = nn.Linear(self.obs_size, self.rnn_hidden_dim)
|
|
|
|
self.rnn = nn.GRUCell(self.rnn_hidden_dim, self.rnn_hidden_dim)
|
|
|
|
self.fc2 = nn.Linear(self.rnn_hidden_dim, num_outputs)
|
2020-12-02 02:41:10 +01:00
|
|
|
self.n_agents = model_config["n_agents"]
|
|
|
|
|
2020-04-29 12:12:59 +02:00
|
|
|
@override(ModelV2)
|
2019-07-25 11:02:53 -07:00
|
|
|
def get_initial_state(self):
|
2020-05-08 08:20:18 +02:00
|
|
|
# Place hidden states on same device as model.
|
2020-12-07 13:08:17 +01:00
|
|
|
return [
|
2022-01-29 18:41:57 -08:00
|
|
|
self.fc1.weight.new(self.n_agents, self.rnn_hidden_dim).zero_().squeeze(0)
|
2020-12-07 13:08:17 +01:00
|
|
|
]
|
2018-12-18 10:40:01 -08:00
|
|
|
|
2020-04-29 12:12:59 +02:00
|
|
|
@override(ModelV2)
|
2019-07-25 11:02:53 -07:00
|
|
|
def forward(self, input_dict, hidden_state, seq_lens):
|
2020-01-23 02:02:58 +01:00
|
|
|
x = nn.functional.relu(self.fc1(input_dict["obs_flat"].float()))
|
2019-01-03 13:48:33 +08:00
|
|
|
h_in = hidden_state[0].reshape(-1, self.rnn_hidden_dim)
|
2018-12-18 10:40:01 -08:00
|
|
|
h = self.rnn(x, h_in)
|
|
|
|
q = self.fc2(h)
|
2019-07-25 11:02:53 -07:00
|
|
|
return q, [h]
|
2019-01-03 13:48:33 +08:00
|
|
|
|
|
|
|
|
|
|
|
def _get_size(obs_space):
|
|
|
|
return get_preprocessor(obs_space)(obs_space).size
|