ray/test/jenkins_tests/run_multi_node_tests.sh

240 lines
8.9 KiB
Bash
Raw Normal View History

#!/usr/bin/env bash
# Cause the script to exit if a single command fails.
set -e
# Show explicitly which commands are currently running.
set -x
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache)
echo "Using Docker image" $DOCKER_SHA
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
Shard Redis. (#539) * Implement sharding in the Ray core * Single node Python modifications to do sharding * Do the sharding in redis.cc * Pipe num_redis_shards through start_ray.py and worker.py. * Use multiple redis shards in multinode tests. * first steps for sharding ray.global_state * Fix problem in multinode docker test. * fix runtest.py * fix some tests * fix redis shard startup * fix redis sharding * fix * fix bug introduced by the map-iterator being consumed * fix sharding bug * shard event table * update number of Redis clients to be 64K * Fix object table tests by flushing shards in between unit tests * Fix local scheduler tests * Documentation * Register shard locations in the primary shard * Add plasma unit tests back to build * lint * lint and fix build * Fix * Address Robert's comments * Refactor start_ray_processes to start Redis shard * lint * Fix global scheduler python tests * Fix redis module test * Fix plasma test * Fix component failure test * Fix local scheduler test * Fix runtest.py * Fix global scheduler test for python3 * Fix task_table_test_and_update bug, from actor task table submission race * Fix jenkins tests. * Retry Redis shard connections * Fix test cases * Convert database clients to DBClient struct * Fix race condition when subscribing to db client table * Remove unused lines, add APITest for sharded Ray * Fix * Fix memory leak * Suppress ReconstructionTests output * Suppress output for APITestSharded * Reissue task table add/update commands if initial command does not publish to any subscribers. * fix * Fix linting. * fix tests * fix linting * fix python test * fix linting
2017-05-18 17:40:41 -07:00
--num-redis-shards=10 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
Shard Redis. (#539) * Implement sharding in the Ray core * Single node Python modifications to do sharding * Do the sharding in redis.cc * Pipe num_redis_shards through start_ray.py and worker.py. * Use multiple redis shards in multinode tests. * first steps for sharding ray.global_state * Fix problem in multinode docker test. * fix runtest.py * fix some tests * fix redis shard startup * fix redis sharding * fix * fix bug introduced by the map-iterator being consumed * fix sharding bug * shard event table * update number of Redis clients to be 64K * Fix object table tests by flushing shards in between unit tests * Fix local scheduler tests * Documentation * Register shard locations in the primary shard * Add plasma unit tests back to build * lint * lint and fix build * Fix * Address Robert's comments * Refactor start_ray_processes to start Redis shard * lint * Fix global scheduler python tests * Fix redis module test * Fix plasma test * Fix component failure test * Fix local scheduler test * Fix runtest.py * Fix global scheduler test for python3 * Fix task_table_test_and_update bug, from actor task table submission race * Fix jenkins tests. * Retry Redis shard connections * Fix test cases * Convert database clients to DBClient struct * Fix race condition when subscribing to db client table * Remove unused lines, add APITest for sharded Ray * Fix * Fix memory leak * Suppress ReconstructionTests output * Suppress output for APITestSharded * Reissue task table add/update commands if initial command does not publish to any subscribers. * fix * Fix linting. * fix tests * fix linting * fix python test * fix linting
2017-05-18 17:40:41 -07:00
--num-redis-shards=5 \
--num-gpus=0,1,2,3,4 \
--num-drivers=7 \
--driver-locations=0,1,0,1,2,3,4 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/remove_driver_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
Shard Redis. (#539) * Implement sharding in the Ray core * Single node Python modifications to do sharding * Do the sharding in redis.cc * Pipe num_redis_shards through start_ray.py and worker.py. * Use multiple redis shards in multinode tests. * first steps for sharding ray.global_state * Fix problem in multinode docker test. * fix runtest.py * fix some tests * fix redis shard startup * fix redis sharding * fix * fix bug introduced by the map-iterator being consumed * fix sharding bug * shard event table * update number of Redis clients to be 64K * Fix object table tests by flushing shards in between unit tests * Fix local scheduler tests * Documentation * Register shard locations in the primary shard * Add plasma unit tests back to build * lint * lint and fix build * Fix * Address Robert's comments * Refactor start_ray_processes to start Redis shard * lint * Fix global scheduler python tests * Fix redis module test * Fix plasma test * Fix component failure test * Fix local scheduler test * Fix runtest.py * Fix global scheduler test for python3 * Fix task_table_test_and_update bug, from actor task table submission race * Fix jenkins tests. * Retry Redis shard connections * Fix test cases * Convert database clients to DBClient struct * Fix race condition when subscribing to db client table * Remove unused lines, add APITest for sharded Ray * Fix * Fix memory leak * Suppress ReconstructionTests output * Suppress output for APITestSharded * Reissue task table add/update commands if initial command does not publish to any subscribers. * fix * Fix linting. * fix tests * fix linting * fix python test * fix linting
2017-05-18 17:40:41 -07:00
--num-redis-shards=2 \
--num-gpus=0,0,5,6,50 \
--num-drivers=100 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/many_drivers_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=1 \
--mem-size=60G \
--shm-size=60G \
--test-script=/ray/test/jenkins_tests/multi_node_tests/large_memory_test.py
# Test that the example applications run.
# docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/lbfgs/driver.py
# docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/rl_pong/driver.py \
# --iterations=3
# docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/hyperopt/hyperopt_simple.py
# docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/hyperopt/hyperopt_adaptive.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v0 \
--run A3C \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 16}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--run PPO \
--stop '{"training_iteration": 2}' \
2017-09-11 18:52:48 -07:00
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"free_log_std": true}}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--run PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "use_gae": false}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pendulum-v0 \
--run ES \
--stop '{"training_iteration": 2}' \
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "timesteps_per_batch": 100}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pong-v0 \
--run ES \
--stop '{"training_iteration": 2}' \
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "timesteps_per_batch": 100}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run A3C \
--stop '{"training_iteration": 2}' \
--config '{"use_lstm": false}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run APEX \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2, "timesteps_per_iteration": 1000, "gpu": false}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env FrozenLake-v0 \
--run DQN \
--stop '{"training_iteration": 2}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env FrozenLake-v0 \
--run PPO \
--stop '{"training_iteration": 2}' \
--config '{"num_sgd_iter": 10, "sgd_batchsize": 64, "timesteps_per_batch": 1000, "num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v4 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env MontezumaRevenge-v0 \
--run PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"dim": 40, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}, "extra_frameskip": 4}'
# docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/python/ray/rllib/train.py \
# --env PongDeterministic-v4 \
# --run A3C \
# --stop '{"training_iteration": 2}' \
# --config '{"num_workers": 2, "use_lstm": false, "use_pytorch": true, "model": {"grayscale": true, "zero_mean": false, "dim": 80, "channel_major": true}}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pong-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env FrozenLake-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1}'
2018-04-11 15:08:39 -07:00
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pendulum-v0 \
--run DDPG \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env MountainCarContinuous-v0 \
--run DDPG \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
sh /ray/test/jenkins_tests/multi_node_tests/test_rllib_eval.sh
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_checkpoint_restore.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_supported_spaces.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/tune_mnist_ray.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/pbt_example.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/hyperband_example.py \
--smoke-test
2018-03-04 14:05:56 -08:00
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/async_hyperband_example.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/tune_mnist_ray_hyperband.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/tune_mnist_async_hyperband.py \
--smoke-test
2018-04-04 11:08:26 -07:00
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/hyperopt_example.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/examples/multiagent_mountaincar.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/examples/multiagent_pendulum.py