mirror of
https://github.com/vale981/ray
synced 2025-03-04 17:41:43 -05:00
Add multinode tests by simulating multiple nodes using Docker. (#378)
* run test workloads for a Docker cluster * better manage docker image versions * Changes to make multinode docker tests work with Python 3. * option to mount local test directory on head node to speed development * Attempt to simplify multinode test setup. * Small change. * Add in development-mode to run multinode docker tests more easily during development. * add jenkins test script that links to Docker hash * Read docker SHA from build_docker.sh and add test that should fail. * Consolidate implementations and remove duplicate files. * Allow test to retry if it fails to schedule on all nodes. * Remove sleep when in docker multinode tests.
This commit is contained in:
parent
6d9820ef5d
commit
29c8471fd4
4 changed files with 294 additions and 5 deletions
|
@ -10,23 +10,44 @@ case $key in
|
|||
--skip-examples)
|
||||
SKIP_EXAMPLES=YES
|
||||
;;
|
||||
--output-sha)
|
||||
# output the SHA sum of the last built file (either ray-project/deploy
|
||||
# or ray-project/examples, suppressing all other output. This is useful
|
||||
# for scripting tests, especially when builds of different versions
|
||||
# are running on the same machine. It also can facilitate cleanup.
|
||||
OUTPUT_SHA=YES
|
||||
;;
|
||||
*)
|
||||
echo "Usage: build-docker.sh [ --no-cache ] [ --skip-examples ]"
|
||||
echo "Usage: build-docker.sh [ --no-cache ] [ --skip-examples ] [ --sha-sums ]"
|
||||
exit 1
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
# Build base dependencies, allow caching
|
||||
docker build $NO_CACHE -t ray-project/base-deps docker/base-deps
|
||||
if [ $OUTPUT_SHA ]; then
|
||||
IMAGE_SHA=$(docker build $NO_CACHE -q -t ray-project/base-deps docker/base-deps)
|
||||
else
|
||||
docker build $NO_CACHE -t ray-project/base-deps docker/base-deps
|
||||
fi
|
||||
|
||||
# Build the current Ray source
|
||||
git rev-parse HEAD > ./docker/deploy/git-rev
|
||||
git archive -o ./docker/deploy/ray.tar $(git rev-parse HEAD)
|
||||
docker build --no-cache -t ray-project/deploy docker/deploy
|
||||
if [ $OUTPUT_SHA ]; then
|
||||
IMAGE_SHA=$(docker build --no-cache -q -t ray-project/deploy docker/deploy)
|
||||
else
|
||||
docker build --no-cache -t ray-project/deploy docker/deploy
|
||||
fi
|
||||
rm ./docker/deploy/ray.tar ./docker/deploy/git-rev
|
||||
|
||||
|
||||
# Build the examples, unless skipped
|
||||
if [ ! $SKIP_EXAMPLES ]; then
|
||||
docker build $NO_CACHE -t ray-project/examples docker/examples
|
||||
if [ $OUTPUT_SHA ]; then
|
||||
IMAGE_SHA=$(docker build $NO_CACHE -q -t ray-project/examples docker/examples)
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $OUTPUT_SHA ]; then
|
||||
echo $IMAGE_SHA | sed 's/sha256://'
|
||||
fi
|
||||
|
|
232
test/jenkins_tests/multi_node_docker_test.py
Normal file
232
test/jenkins_tests/multi_node_docker_test.py
Normal file
|
@ -0,0 +1,232 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
|
||||
def wait_for_output(proc):
|
||||
"""This is a convenience method to parse a process's stdout and stderr.
|
||||
|
||||
Args:
|
||||
proc: A process started by subprocess.Popen.
|
||||
|
||||
Returns:
|
||||
A tuple of the stdout and stderr of the process as strings.
|
||||
"""
|
||||
stdout_data, stderr_data = proc.communicate()
|
||||
stdout_data = stdout_data.decode("ascii") if stdout_data is not None else None
|
||||
stderr_data = stderr_data.decode("ascii") if stderr_data is not None else None
|
||||
return stdout_data, stderr_data
|
||||
|
||||
class DockerRunner(object):
|
||||
"""This class manages the logistics of running multiple nodes in Docker.
|
||||
|
||||
This class is used for starting multiple Ray nodes within Docker, stopping
|
||||
Ray, running a workload, and determining the success or failure of the
|
||||
workload.
|
||||
|
||||
Attributes:
|
||||
head_container_id: The ID of the docker container that runs the head node.
|
||||
worker_container_ids: A list of the docker container IDs of the Ray worker
|
||||
nodes.
|
||||
head_container_ip: The IP address of the docker container that runs the head
|
||||
node.
|
||||
"""
|
||||
def __init__(self):
|
||||
"""Initialize the DockerRunner."""
|
||||
self.head_container_id = None
|
||||
self.worker_container_ids = []
|
||||
self.head_container_ip = None
|
||||
|
||||
def _get_container_id(self, stdout_data):
|
||||
"""Parse the docker container ID from stdout_data.
|
||||
|
||||
Args:
|
||||
stdout_data: This should be a string with the standard output of a call to
|
||||
a docker command.
|
||||
|
||||
Returns:
|
||||
The container ID of the docker container.
|
||||
"""
|
||||
p = re.compile("([0-9a-f]{64})\n")
|
||||
m = p.match(stdout_data)
|
||||
if m is None:
|
||||
return None
|
||||
else:
|
||||
return m.group(1)
|
||||
|
||||
def _get_container_ip(self, container_id):
|
||||
"""Get the IP address of a specific docker container.
|
||||
|
||||
Args:
|
||||
container_id: The docker container ID of the relevant docker container.
|
||||
|
||||
Returns:
|
||||
The IP address of the container.
|
||||
"""
|
||||
proc = subprocess.Popen(["docker", "inspect",
|
||||
"--format={{.NetworkSettings.Networks.bridge.IPAddress}}",
|
||||
container_id],
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout_data, _ = wait_for_output(proc)
|
||||
p = re.compile("([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})")
|
||||
m = p.match(stdout_data)
|
||||
if m is None:
|
||||
raise RuntimeError("Container IP not found.")
|
||||
else:
|
||||
return m.group(1)
|
||||
|
||||
def _start_head_node(self, docker_image, mem_size, shm_size,
|
||||
development_mode):
|
||||
"""Start the Ray head node inside a docker container."""
|
||||
mem_arg = ["--memory=" + mem_size] if mem_size else []
|
||||
shm_arg = ["--shm-size=" + shm_size] if shm_size else []
|
||||
volume_arg = ["-v",
|
||||
"{}:{}".format(os.path.dirname(os.path.realpath(__file__)),
|
||||
"/ray/test/jenkins_tests")] if development_mode else []
|
||||
proc = subprocess.Popen(["docker", "run", "-d"] + mem_arg + shm_arg +
|
||||
volume_arg +
|
||||
[docker_image, "/ray/scripts/start_ray.sh",
|
||||
"--head", "--redis-port=6379"],
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout_data, _ = wait_for_output(proc)
|
||||
container_id = self._get_container_id(stdout_data)
|
||||
if container_id is None:
|
||||
raise RuntimeError("Failed to find container ID.")
|
||||
self.head_container_id = container_id
|
||||
self.head_container_ip = self._get_container_ip(container_id)
|
||||
print("start_node", {"container_id": container_id,
|
||||
"is_head": True,
|
||||
"shm_size": shm_size,
|
||||
"ip_address": self.head_container_ip})
|
||||
return container_id
|
||||
|
||||
def _start_worker_node(self, docker_image, mem_size, shm_size):
|
||||
"""Start a Ray worker node inside a docker container."""
|
||||
mem_arg = ["--memory=" + mem_size] if mem_size else []
|
||||
shm_arg = ["--shm-size=" + shm_size] if shm_size else []
|
||||
proc = subprocess.Popen(["docker", "run", "-d"] + mem_arg + shm_arg +
|
||||
["--shm-size=" + shm_size, docker_image,
|
||||
"/ray/scripts/start_ray.sh",
|
||||
"--redis-address={:s}:6379".format(self.head_container_ip)],
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout_data, _ = wait_for_output(proc)
|
||||
container_id = self._get_container_id(stdout_data)
|
||||
if container_id is None:
|
||||
raise RuntimeError("Failed to find container id")
|
||||
self.worker_container_ids.append(container_id)
|
||||
print("start_node", {"container_id": container_id,
|
||||
"is_head": False,
|
||||
"shm_size": shm_size})
|
||||
|
||||
def start_ray(self, docker_image, mem_size, shm_size, num_nodes,
|
||||
development_mode):
|
||||
"""Start a Ray cluster within docker.
|
||||
|
||||
This starts one docker container running the head node and num_nodes - 1
|
||||
docker containers running the Ray worker nodes.
|
||||
|
||||
Args:
|
||||
docker_image: The docker image to use for all of the nodes.
|
||||
mem_size: The amount of memory to start each docker container with. This
|
||||
will be passed into `docker run` as the --memory flag. If this is None,
|
||||
then no --memory flag will be used.
|
||||
shm_size: The amount of shared memory to start each docker container with.
|
||||
This will be passed into `docker run` as the `--shm-size` flag.
|
||||
num_nodes: The number of nodes to use in the cluster (this counts the head
|
||||
node as well).
|
||||
development_mode: True if you want to mount the local copy of
|
||||
test/jenkins_test on the head node so we can avoid rebuilding docker
|
||||
images during development.
|
||||
"""
|
||||
# Launch the head node.
|
||||
self._start_head_node(docker_image, mem_size, shm_size, development_mode)
|
||||
# Start the worker nodes.
|
||||
for _ in range(num_nodes - 1):
|
||||
self._start_worker_node(docker_image, mem_size, shm_size)
|
||||
|
||||
def _stop_node(self, container_id):
|
||||
"""Stop a node in the Ray cluster."""
|
||||
proc = subprocess.Popen(["docker", "kill", container_id],
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout_data, _ = wait_for_output(proc)
|
||||
stopped_container_id = self._get_container_id(stdout_data)
|
||||
if not container_id == stopped_container_id:
|
||||
raise Exception("Failed to stop container {}.".format(container_id))
|
||||
|
||||
proc = subprocess.Popen(["docker", "rm", "-f", container_id],
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout_data, _ = wait_for_output(proc)
|
||||
removed_container_id = self._get_container_id(stdout_data)
|
||||
if not container_id == stopped_container_id:
|
||||
raise Exception("Failed to remove container {}.".format(container_id))
|
||||
|
||||
print("stop_node", {"container_id": container_id,
|
||||
"is_head": container_id == self.head_container_id})
|
||||
|
||||
def stop_ray(self):
|
||||
"""Stop the Ray cluster."""
|
||||
self._stop_node(self.head_container_id)
|
||||
for container_id in self.worker_container_ids:
|
||||
self._stop_node(container_id)
|
||||
|
||||
def run_test(self, test_script, run_in_docker=False):
|
||||
"""Run a test script.
|
||||
|
||||
Run a test using the Ray cluster.
|
||||
|
||||
Args:
|
||||
test_script: The test script to run.
|
||||
run_in_docker: If true then the test script will be run in a docker
|
||||
container. If false, it will be run regularly.
|
||||
|
||||
Returns:
|
||||
A dictionary with information about the test script run.
|
||||
"""
|
||||
print("Starting to run test script {}.".format(test_script))
|
||||
proc = subprocess.Popen(["docker", "exec", self.head_container_id,
|
||||
"/bin/bash", "-c",
|
||||
"RAY_REDIS_ADDRESS={}:6379 "
|
||||
"python {}".format(self.head_container_ip,
|
||||
test_script)],
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout_data, stderr_data = wait_for_output(proc)
|
||||
print("STDOUT:")
|
||||
print(stdout_data)
|
||||
print("STDERR:")
|
||||
print(stderr_data)
|
||||
return {"success": proc.returncode == 0, "return_code": proc.returncode}
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run multinode tests in Docker.")
|
||||
parser.add_argument("--docker-image", default="ray-project/deploy",
|
||||
help="docker image")
|
||||
parser.add_argument("--mem-size", help="memory size")
|
||||
parser.add_argument("--shm-size", default="1G", help="shared memory size")
|
||||
parser.add_argument("--num-nodes", default=1, type=int,
|
||||
help="number of nodes to use in the cluster")
|
||||
parser.add_argument("--test-script", required=True, help="test script")
|
||||
parser.add_argument("--development-mode", action="store_true",
|
||||
help="use local copies of the test scripts")
|
||||
args = parser.parse_args()
|
||||
|
||||
d = DockerRunner()
|
||||
d.start_ray(mem_size=args.mem_size, shm_size=args.shm_size,
|
||||
num_nodes=args.num_nodes, docker_image=args.docker_image,
|
||||
development_mode=args.development_mode)
|
||||
try:
|
||||
run_result = d.run_test(args.test_script)
|
||||
finally:
|
||||
d.stop_ray()
|
||||
|
||||
if "success" in run_result and run_result["success"]:
|
||||
print("RESULT: Test {} succeeded.".format(args.test_script))
|
||||
sys.exit(0)
|
||||
else:
|
||||
print("RESULT: Test {} failed.".format(args.test_script))
|
||||
sys.exit(1)
|
22
test/jenkins_tests/multi_node_tests/test_0.py
Normal file
22
test/jenkins_tests/multi_node_tests/test_0.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
import os
|
||||
import time
|
||||
|
||||
import ray
|
||||
|
||||
@ray.remote
|
||||
def f():
|
||||
time.sleep(0.1)
|
||||
return ray.services.get_node_ip_address()
|
||||
|
||||
if __name__ == "__main__":
|
||||
ray.init(redis_address=os.environ["RAY_REDIS_ADDRESS"])
|
||||
# Check that tasks are scheduled on all nodes.
|
||||
num_attempts = 30
|
||||
for i in range(num_attempts):
|
||||
ip_addresses = ray.get([f.remote() for i in range(1000)])
|
||||
distinct_addresses = set(ip_addresses)
|
||||
counts = [ip_addresses.count(address) for address in distinct_addresses]
|
||||
print("Counts are {}".format(counts))
|
||||
if len(counts) == 5:
|
||||
break
|
||||
assert len(counts) == 5
|
14
test/jenkins_tests/run_multi_node_tests.sh
Executable file
14
test/jenkins_tests/run_multi_node_tests.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Cause the script to exit if a single command fails.
|
||||
set -e
|
||||
|
||||
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
|
||||
|
||||
DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache --skip-examples)
|
||||
echo "Using Docker image" $DOCKER_SHA
|
||||
|
||||
python $ROOT_DIR/multi_node_docker_test.py \
|
||||
--docker-image=$DOCKER_SHA \
|
||||
--num-nodes=5 \
|
||||
--test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py
|
Loading…
Add table
Reference in a new issue